タグ「円」の検索結果

50ページ目:全908問中491問~500問を表示)
大阪歯科大学 私立 大阪歯科大学 2013年 第1問
以下の$[ ]$に入る適切な数値を解答欄に記せ.

(1)$\displaystyle a=\frac{1}{2-\sqrt{3}},\ b=\frac{1}{3-\sqrt{2}},\ c=\frac{1}{\sqrt{2}-1}$のとき,数式
\[ a-\left\{ \frac{2b-c}{3}-\left( \frac{1}{6} a+\frac{2}{3}b-c \right) -\frac{1}{3} a \right\}-3 \left( \frac{1}{2}a-\frac{c}{3} \right) \]
の値は$[$\mathrm{a]$}$となる.
(2)ある宝石の価格は,その重量の$2$乗に比例するものとする.いま,価格$50$万円のその宝石を誤って$2$つに割ってしまった.$2$つのかけらの重量の比が$2:3$であるとき,損害は$[$\mathrm{b]$}$万円である.
(3)赤玉$3$個,白玉$2$個,黒玉$1$個が入った箱から玉を$1$個取り出して色を確認したら元に戻す操作を$5$回繰り返す.このとき,白玉が$2$回以上取り出される確率は$[$\mathrm{c]$}$である.
(4)$x^3+ax^2-10x-b=0$が$x=1,\ 2$を解にもつとき,もう一つの解は$x=[$\mathrm{d]$}$である.
神戸薬科大学 私立 神戸薬科大学 2013年 第3問
円周上の点$\mathrm{A}$での接線を$\ell$とする.直線が接線$\ell$と点$\mathrm{B}$で,円と$2$点$\mathrm{C}$,$\mathrm{D}$で$\mathrm{BC}=9$,$\mathrm{BD}=4$となるように交わっている.$\angle \mathrm{ABC}=\theta$とする.
(図は省略)

(1)線分$\mathrm{AB}$の長さは$[ ]$である.
(2)$\triangle \mathrm{ABC}$の面積を$\theta$を用いて表すと$[ ]$である.
大阪薬科大学 私立 大阪薬科大学 2013年 第3問
次の問いに答えなさい.

$xy$座標平面上に$3$点$\mathrm{P}(-\sqrt{3},\ 0)$,$\mathrm{Q}(0,\ 3)$,$\mathrm{R}(\sqrt{3},\ 0)$がある.$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る放物線を$C$とし,また同じ$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円を$D$とする.

(1)$C$の方程式を$y=f(x)$とするとき,$f(x)=[ ]$である.
(2)$D$は,中心の座標が$[ ]$,半径が$[ ]$である.
(3)$D$の内部で$y \geqq f(x)$を満たす部分の面積は$[ ]$である.
(4)$C$の接線$\ell$が$D$の接線でもあるとき,$\ell$の方程式を求めなさい.
(5)$C$を$y$軸方向に$p$だけ平行移動した曲線が$D$と共通点をもつとき,$p$は$[ ]$の範囲にある.
東京都市大学 私立 東京都市大学 2013年 第2問
$\displaystyle y=\frac{1}{2}x^2$で表される放物線$P$と,$x^2+(y-k)^2=r^2 (r>0)$で表される円$Q$がある.放物線$P$上に点$\displaystyle \mathrm{A} \left( 1,\ \frac{1}{2} \right)$をとるとき,次の問いに答えよ.

(1)点$\mathrm{A}$における放物線$P$の接線$\ell$の方程式を求めよ.
(2)直線$\ell$が点$\mathrm{A}$で円$Q$に接するとき,$k$と$r$の値を求めよ.
(3)$(2)$で求めた$k$と$r$において,次の連立不等式が表す領域の面積を求めよ.
\setstretch{2}
\[ \left\{ \begin{array}{l}
y \geqq \displaystyle\frac{1}{2}x^2 \\
x^2+(y-k)^2 \geqq r^2 \\
y \leqq \displaystyle\frac{1}{2}
\end{array} \right. \]
\setstretch{1.4}
沖縄国際大学 私立 沖縄国際大学 2013年 第4問
以下の各問いに答えなさい.

(1)次の値を求めなさい.

\mon[$①$] $_{7} \mathrm{P}_5$
\mon[$②$] $_{8} \mathrm{C}_3$

(2)$0$から$9$までの$10$個の数字から異なる$5$個の数字を選ぶクジがある.このクジでは,選んだ数字が当選番号の数字$5$個と一致した場合には$1$等の賞金,$5$個の内$3$個が一致した場合には$2$等の賞金がもらえる.このとき,以下の各問いに答えなさい.

\mon[$①$] $1$等の当たる確率を求めなさい.
\mon[$②$] $2$等の当たる確率を求めなさい.
\mon[$③$] $1$等の賞金を$63000$円,$2$等の賞金を$25200$円としたとき,このクジの期待値を求めなさい.
産業医科大学 私立 産業医科大学 2013年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)$100$円,$50$円,$10$円の硬貨がそれぞれたくさんあるとする.ある品物を買うのに$2300$円かかるとき,このお金による支払い方の総数は$[ ]$である.
(2)整式$P(x)$を$x^2-4x+3$で割ったときの余りは$x+1$であり,$x^2-3x+2$で割ったときの余りは$3x-1$である.$P(x)$を$x^3-6x^2+11x-6$で割ったときの余りは$[ ]$である.
(3)数列の極限$\displaystyle \lim_{n \to \infty} \frac{\sum_{k=1}^{2n} (k+n)^2}{\sum_{k=1}^{2n} k^2}$の値は$[ ]$である.
(4)$\sqrt{x}+\sqrt{y}=1$で表される座標平面上の曲線を$C$とする.曲線$C$上の$x$座標が$s (0<s<1)$である点における接線を$\ell$とする.接線$\ell$と曲線$C$および$x$軸,$y$軸とで囲まれた部分を,$x$軸のまわりに$1$回転してできる回転体の体積の最小値は$[ ]$である.また,そのときの$s$の値は$[ ]$である.
(5)原点を$\mathrm{O}$とする座標平面上の$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$を結ぶ線分上に点$\mathrm{P}$がある.$\theta=\angle \mathrm{AOP}$とし,線分$\mathrm{OP}$の長さを$r$とするとき,$r$は$\theta$の関数として$r=f(\theta)$と表せる.このとき定積分$\displaystyle \int_0^{\frac{\pi}{2}} f(\theta) \, d\theta$の値は$[ ]$であり,$\displaystyle \int_0^{\frac{\pi}{2}} f(\theta)^2 \cos \theta \, d\theta$の値は$[ ]$である.
(6)$\mathrm{A}$が$1$枚のカードを,$\mathrm{B}$が$4$枚のカードを持っている.表が出る確率と裏が出る確率がそれぞれ$\displaystyle \frac{1}{2}$の偏りのないコインを投げて,表が出れば$\mathrm{A}$は$\mathrm{B}$からカードを$1$枚もらう.裏が出れば$\mathrm{A}$は$\mathrm{B}$にカードを$1$枚わたす.ただし,手もとにカードがなければわたさなくてよい.この試行を$4$回くり返した後,$\mathrm{A}$の手もとに残るカードの枚数の期待値は$[ ]$である.
成城大学 私立 成城大学 2013年 第2問
円に内接する三角形$\mathrm{ABC}$があり,$\mathrm{BC}=a$,$\mathrm{CA}=b$,$\mathrm{AB}=c$とする($a>b$,$b<c$).下図のように,円周上に$\mathrm{D}$を,$\angle \mathrm{DBA}=\angle \mathrm{ABC}$となるようにとり,$\mathrm{BD}$を延長した直線と$\mathrm{CA}$を延長した直線が交わる点を$\mathrm{P}$とする.$a,\ b,\ c$を用いた式で空欄$[ア]$~$[コ]$を埋めよ.

$\mathrm{DP}$上に点$\mathrm{Q}$を$\angle \mathrm{DQA}=\angle \mathrm{BAC}$となるようにとる.四角形$\mathrm{ADBC}$は円に内接しているので,$\angle \mathrm{BDA}$と$\angle \mathrm{BCA}$の和は${180}^\circ$であるから,$\angle \mathrm{QDA}=\angle \mathrm{BCA}$であり,$\triangle \mathrm{QAD}$と$\triangle \mathrm{ABC}$は相似である.また,$\mathrm{AD}=[ア]$だから,$\mathrm{QD}=[イ]$である.
$\angle \mathrm{BQA}=\angle \mathrm{BAC}$,$\angle \mathrm{QBA}=\angle \mathrm{ABC}$であるから,$\triangle \mathrm{QBA}$と$\triangle \mathrm{ABC}$は相似であり,よって$\mathrm{QB}=[ウ]$となり,$\mathrm{BD}=\mathrm{QB}-\mathrm{QD}$だから,$\mathrm{BD}=[エ]$となる.
また,$\angle \mathrm{QDA}=\angle \mathrm{BCA}$であり,$\angle \mathrm{P}$は共通より,$\triangle \mathrm{PAD}$と$\triangle \mathrm{PBC}$は相似であるから,$\mathrm{DP}:\mathrm{CP}=[オ]:[カ]$となる.$\mathrm{CP}=\mathrm{AP}+[キ]$より,$\mathrm{DP}=[ク] \mathrm{AP}+[ケ]$となる.方べきの定理より,$\mathrm{DP} \cdot \mathrm{BP}=\mathrm{AP} \cdot \mathrm{CP}$であり,これを$\mathrm{AP}$について解くと$\mathrm{AP}=[コ]$となる.
(図は省略)
東京女子大学 私立 東京女子大学 2013年 第1問
座標平面における放物線$\displaystyle C_1:y=\frac{1}{2}x^2+\frac{1}{2}$,および円$C_2:x^2+y^2=2$について,以下の設問に答えよ.

(1)$C_1$と$C_2$の交点を$\mathrm{P}$,$\mathrm{Q}$とするとき,$\angle \mathrm{POQ}$を求めよ.ただし,$\mathrm{O}$は座標平面における原点をあらわす.
(2)$C_1$と$C_2$で囲まれた部分の面積を求めよ.
東京女子大学 私立 東京女子大学 2013年 第4問
座標平面において点$\mathrm{C}(1,\ 1)$を中心とする半径$1$の円と曲線$\displaystyle y=\frac{1}{x}$の$2$つの交点を$\mathrm{A}$,$\mathrm{B}$とし,その$x$座標をそれぞれ$\alpha,\ \beta$とする.ただし$0<\alpha<\beta$とする.

(1)$\alpha+\beta$および$\alpha \beta$を求めよ.
(2)$\cos \angle \mathrm{ACB}$を求めよ.
玉川大学 私立 玉川大学 2013年 第2問
次の$[ ]$を埋めよ.

(1)方程式$9 \sin x-2 \cos^2 x-3=0 (0<x<\pi)$は
\[ [ア] \sin^2 x+[イ] \sin x-[ウ]=0 \]
となるから,解は$\displaystyle x=\frac{[エ]}{[オ]}\pi,\ \frac{[カ]}{[キ]}\pi$である.
(2)$a>0$,$b>0$のとき,$\displaystyle a+\frac{1}{a}$の最小値は$[ク]$で,$\displaystyle \left( a+\frac{2}{b} \right) \left( b+\frac{8}{a} \right)$の最小値は$[ケコ]$である.
(3)同じ大きさの白玉$6$個と赤玉$4$個が袋の中に入っている.この袋の中から同時に$3$個の玉をとりだして目印をつけてから袋にもどし,再び袋の中から$1$個の玉をとりだす.$2$回目にとりだされた玉が目印のついた白玉である確率は
\[ \frac{[サ]}{[シス]} \]
である.
(4)実数$x,\ y$が$x^2+y^2=1$を満たすとき,$2x+3y$の最大値は$\sqrt{[セソ]}$である.
(5)$x^{99}+x^{49}+1$を$x^2-1$で割った余りは,$[タ]x+[チ]$である.
(6)$2$つの方程式
\[ \left\{ \begin{array}{l}
2x^2+(2a+5)x+5a=0 \\
2x^2+3ax+16=0
\end{array} \right. \]
が共通の解をもてば,$a=[ツテ]$または$\displaystyle a=\frac{[トナ]}{[ニ]}$である.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。