タグ「円」の検索結果

41ページ目:全908問中401問~410問を表示)
弘前大学 国立 弘前大学 2013年 第3問
$2$曲線$C_1:x^2+y^2=1$と$\displaystyle C_2:y=-\frac{\sqrt{3}}{3}(x-3)(x-\beta)$を考える.ただし,$\beta>3$とする.また,$C_1$上の点$\displaystyle \left( \frac{1}{2},\ -\frac{\sqrt{3}}{2} \right)$を通る$C_1$の接線$\ell$が$C_2$にも接しているとする.次の問いに答えよ.

(1)$\ell$と$C_2$の接点の座標および$\beta$の値を求めよ.
(2)$C_1$と$\ell$および$x$軸で囲まれた部分を$S_1$とし,$C_2$と$\ell$および$x$軸で囲まれた部分を$S_2$とする.このとき,$S_1$と$S_2$の面積をそれぞれ求めよ.
岩手大学 国立 岩手大学 2013年 第6問
$2$つの円$x^2+y^2=1$と$\displaystyle (x-a)^2+y^2=\frac{a^2}{4} \ (a>0)$が相異なる$2$点で交わるとき,次の問いに答えよ.

(1)$a$の値の範囲を求めよ.
(2)第$1$象限の交点における$2$つの円の接線が直交するとき,$a$の値を求めよ.
秋田大学 国立 秋田大学 2013年 第1問
円$x^2+y^2=1$を$C_1$とし,点$\mathrm{P}(0,\ -1)$を通り,傾きが$m$の直線を$\ell$とする.ただし,$m>1$である.次の問いに答えよ.

(1)円$C_1$と直線$\ell$の交点のうち,$\mathrm{P}$と異なるものを$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を求めよ.さらに,点$\mathrm{Q}$における円$C_1$の接線の方程式を求めよ.
(2)原点$\mathrm{O}$と点$\mathrm{P}$および(1)の点$\mathrm{Q}$の$3$点を通る円を$C_2$とする.$C_2$の方程式を求めよ.
(3)$m=\sqrt{3}$のとき,円$C_1$と(2)の円$C_2$の両方に接する直線の方程式を求めよ.
高知大学 国立 高知大学 2013年 第1問
座標平面において,点$(0,\ 5)$を通り,直線$y=x$と点$(a,\ a)$で接する円$C$について,次の問いに答えよ.

(1)点$(0,\ 5)$と直線$y=x$と点$(a,\ a)$がかかれているとき,コンパスと目盛りのない定規を用いて,円$C$を作図する手順を説明せよ.
(2)円$C$の方程式を求めよ.
(3)円$C$の中心の座標を$(s,\ t)$とするとき,$\displaystyle x=\frac{\sqrt{2}}{2}(s+t)$,$\displaystyle y=\frac{\sqrt{2}}{2}(-s+t)$とおく.このとき,$a$の値が変化するときの点$(x,\ y)$の軌跡を座標平面に図示せよ.
高知大学 国立 高知大学 2013年 第2問
円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=1$,$\mathrm{BC}=2$,$\mathrm{CD}=3$,$\mathrm{DA}=4$とする.このとき,次の問いに答えよ.

(1)$\mathrm{AC}$を求めよ.
(2)$\sin \angle \mathrm{ABC}$を求めよ.
(3)$\mathrm{A}$から直線$\mathrm{BC}$に下ろした垂線$\mathrm{AE}$の長さを求めよ.
(4)$\sin \angle \mathrm{ACB}$を求めよ.
(5)四角形$\mathrm{ABCD}$の面積を求めよ.
高知大学 国立 高知大学 2013年 第3問
円$x^2+y^2+4x+2 \sqrt{2}y+3=0$について,次の問いに答えよ.

(1)この円の中心と半径をそれぞれ求めよ.
(2)この円上の点$(x,\ y)$において,$x+y$のとる値の最大値と最小値を求めよ.
(3)この円上の点で座標がともに有理数となる点をすべて求めよ.
香川大学 国立 香川大学 2013年 第4問
$0<p_1<p_2,\ 1<r_2$とする.中心$\mathrm{O}_1(p_1,\ 0)$,半径$1$の円$C_1$と,中心$\mathrm{O}_2(p_2,\ 0)$,半径$r_2$の円$C_2$は点$\mathrm{T}$で外接している.また円$C_1,\ C_2$はともに放物線$C:x=y^2$に接している.円$C_1$と放物線$C$との接点で第$1$象限にあるものを$\mathrm{Q}_1({q_1}^2,\ q_1)$,円$C_2$と放物線$C$との接点で第$1$象限にあるものを$\mathrm{Q}_2({q_2}^2,\ q_2)$とおくとき,次の問に答えよ.

(1)$p_1,\ p_2,\ q_1,\ q_2,\ r_2$を求めよ.
(2)放物線$C$と弧$\widehat{\mathrm{Q}_1 \mathrm{T}}$および弧$\widehat{\mathrm{Q}_2 \mathrm{T}}$で囲まれた図形を$D$とするとき,$C$,$C_1$,$C_2$の概形をかき,$D$を図示せよ.ただし,ここでいう弧とは,その中心角が$180^\circ$以下のものをいう.
(3)$D$を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
佐賀大学 国立 佐賀大学 2013年 第4問
点$(0,\ a)$を中心とする半径$r$の円$C$と放物線$F:y=x^2$を考える.ただし,$a>0$とする.このとき,次の問に答えよ.

(1)円$C$と放物線$F$が点$(b,\ b^2)$で同じ接線を持つとする.ただし,$b>0$とする.このとき,$C$の中心と点$(b,\ b^2)$を結ぶ直線の傾きを$b$を用いて表せ.また,$r$を$b$を用いて表せ.
(2)(1)において$r=1$とする.このとき,$C$と$F$で囲まれた図形の面積$S$を求めよ.
(3)$C$と$F$の共有点が原点のみであるための$r$の条件を求めよ.
帯広畜産大学 国立 帯広畜産大学 2013年 第2問
関数$\displaystyle f(x)=\frac{1}{2}x^3+ax^2+bx+c$で定義される曲線$y=f(x)$は,$3$点$(0,\ 0)$,$(2,\ 0)$,$(-2,\ 0)$を通る.また,曲線$y=f(x)$を$x$軸方向に$1$だけ移動した曲線を$y=g(x)$とする.ただし,$a,\ b,\ c$は実数とする.次の各問に答えよ.

(1)$a,\ b,\ c$の値を求めなさい.
(2)関数$y=f(x)$の増減表を作り,そのグラフの概形を図示しなさい.
(3)曲線$y=f(x)$と円$x^2+y^2=4$のすべての交点を求めなさい.
(4)連立不等式
\[ \left\{ \begin{array}{l}
x^2+y^2 \leqq 4 \\
y \geqq f(x) \\
y \geqq g(x)
\end{array} \right. \]
で示される領域を図示し,この領域の面積を求めなさい.
筑波大学 国立 筑波大学 2013年 第3問
$xyz$空間において,点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$を通る平面上にあり,正三角形$\mathrm{ABC}$に内接する円板を$D$とする.円板$D$の中心を$\mathrm{P}$,円板$D$と辺$\mathrm{AB}$の接点を$\mathrm{Q}$とする.

(1)点$\mathrm{P}$と点$\mathrm{Q}$の座標を求めよ.
(2)円板$D$が平面$z=t$と共有点をもつ$t$の範囲を求めよ.
(3)円板$D$と平面$z=t$の共通部分が線分であるとき,その線分の長さを$t$を用いて表せ.
(4)円板$D$を$z$軸のまわりに回転してできる立体の体積を求めよ.
(図は省略)
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。