タグ「円」の検索結果

39ページ目:全908問中381問~390問を表示)
島根県立大学 公立 島根県立大学 2014年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{\sin {2014}^\circ}{\log_{10}25}$の値を求めよ.ただし,$\sin {34}^\circ=0.56$,$\log_{10}2=0.30$とする.

(2)$1$から$6$までの整数が$1$つずつ書かれた$6$枚のカードから$3$枚のカードを無作為に取り出す.$1$枚目に取り出したカードに書かれた数字を$a$,$2$枚目を$b$,$3$枚目を$c$とする.このとき,$a,\ b,\ c$を係数に含む$x$に関する$2$次方程式$ax^2+2bx+c=0$が重解を持つ確率を求めよ.

(3)$\displaystyle \frac{1}{x}+\frac{1}{5y}=\frac{1}{5}$を満たす自然数の組$(x,\ y)$をすべて求めよ.

(4)下の図において,$\mathrm{AB}=a$,$\mathrm{AC}=b$,$\mathrm{AD}=c$のとき,$\cos \angle \mathrm{ABD}$を$a,\ b,\ c$を用いて表しなさい.ただし,$\mathrm{BC}$は円$\mathrm{O}$の直径とし,点$\mathrm{A}$における円の接線と直線$\mathrm{BC}$との交点を$\mathrm{D}$とする.
(図は省略)
京都大学 国立 京都大学 2013年 第5問
$xy$平面内で,$y$軸上の点$\mathrm{P}$を中心とする円$C$が$2$つの曲線
\[ C_1:y=\sqrt{3}\log (1+x),\quad C_2:y=\sqrt{3}\log (1-x) \]
とそれぞれ点$\mathrm{A}$,点$\mathrm{B}$で接しているとする.さらに$\triangle \mathrm{PAB}$は$\mathrm{A}$と$\mathrm{B}$が$y$軸に関して対称な位置にある正三角形であるとする.このとき$3$つの曲線$C$,$C_1$,$C_2$で囲まれた部分の面積を求めよ.
京都大学 国立 京都大学 2013年 第4問
$\alpha,\ \beta$を実数とする.$xy$平面内で,点$(0,\ 3)$を中心とする円$C$と放物線
\[ y=-\frac{x^2}{3}+\alpha x-\beta \]
が点$\mathrm{P}(\sqrt{3},\ 0)$を共有し,さらに$\mathrm{P}$における接線が一致している.このとき以下の問に答えよ.

(1)$\alpha,\ \beta$の値を求めよ.
(2)円$C$,放物線$\displaystyle y=-\frac{x^2}{3}+\alpha x-\beta$および$y$軸で囲まれた部分の面積を求めよ.
東北大学 国立 東北大学 2013年 第6問
半径1の円を底面とする高さ$\displaystyle \frac{1}{\sqrt{2}}$の直円柱がある.底面の円の中心を$\mathrm{O}$とし,直径を1つ取り$\mathrm{AB}$とおく.$\mathrm{AB}$を含み底面と$45^\circ$の角度をなす平面でこの直円柱を2つの部分に分けるとき,体積の小さい方の部分を$V$とする.

(1)直径$\mathrm{AB}$と直交し,$\mathrm{O}$との距離が$t \ (0 \leqq t \leqq 1)$であるような平面で$V$を切ったときの断面積$S(t)$を求めよ.
(2)$V$の体積を求めよ.
名古屋大学 国立 名古屋大学 2013年 第2問
平面上に同じ点$\mathrm{O}$を中心とする半径$1$の円$C_1$と半径$2$の円$C_2$があり,$C_1$の周上に定点$\mathrm{A}$がある.点$\mathrm{P}$,$\mathrm{Q}$はそれぞれ$C_1$,$C_2$の周上を反時計回りに動き,ともに時間$t$の間に弧長$t$だけ進む.時刻$t=0$において,$\mathrm{P}$は$\mathrm{A}$の位置にあって$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$はこの順に同一直線上に並んでいる.$0 \leqq t \leqq 4\pi$のとき$\triangle \mathrm{APQ}$の面積の$2$乗の最大値を求めよ.
広島大学 国立 広島大学 2013年 第4問
座標平面上で,原点$\mathrm{O}$を中心とする半径$1$の円を$C$とし,$2$点$\mathrm{P}(0,\ 1)$,$\mathrm{Q}(s,\ 0)$を考える.$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線を$\ell$とし,$\ell$と$C$の交点のうち$\mathrm{P}$ではないものを$\mathrm{R}$とする.次の問いに答えよ.

(1)点$\mathrm{R}$の座標を$s$を用いて表せ.
(2)$x$座標と$y$座標がともに有理数である点を有理点という.$s$が有理数のとき,$\mathrm{R}$は有理点であることを示せ.
信州大学 国立 信州大学 2013年 第1問
$xy$平面上の原点$\mathrm{O}$を中心とし,半径が$1$である円$C$の円周上に,点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(\cos \theta,\ \sin \theta)$をとる.ただし,$0<\theta<\pi$とする.このとき,次の問に答えよ.

(1)三角形$\mathrm{OAB}$の外心$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$が円$C$の円周上にあるとき,$\theta$の値を求めよ.
信州大学 国立 信州大学 2013年 第2問
$xy$平面上の原点$\mathrm{O}$を中心とし,半径が1である円$C$の円周上に,点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(\cos \theta,\ \sin \theta)$をとる.ただし,$0<\theta<\pi$とする.このとき,次の問に答えよ.

(1)三角形$\mathrm{OAB}$の外心$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$が円$C$の円周上にあるとき,$\theta$の値を求めよ.
九州大学 国立 九州大学 2013年 第4問
原点$\mathrm{O}$を中心とし,点$\mathrm{A}(0,\ 1)$を通る円を$S$とする.点$\displaystyle \mathrm{B} \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$で円$S$に内接する円$T$が,点$\mathrm{C}$で$y$軸に接しているとき,以下の問いに答えよ.

(1)円$T$の中心$\mathrm{D}$の座標と半径を求めよ.
(2)点$\mathrm{D}$を通り$x$軸に平行な直線を$\ell$とする.円$S$の短い方の弧$\koa{AB}$,円$T$の短い方の弧$\koa{BC}$,および線分$\mathrm{AC}$で囲まれた図形を$\ell$のまわりに1回転してできる立体の体積を求めよ.
熊本大学 国立 熊本大学 2013年 第2問
$\mathrm{O}$を原点とする空間内の$2$点$\mathrm{A}(-1,\ 1,\ 1)$,$\mathrm{B}(2,\ 1,\ -2)$に対して,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}} \geqq 0$かつ$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OP}} \geqq 0$を満たす平面$\mathrm{OAB}$上の点$\mathrm{P}$からなる領域を$D$とする.以下の問いに答えよ.

(1)実数$k$に対して,$\overrightarrow{\mathrm{OQ}}=k \overrightarrow{\mathrm{OA}}+(1-k) \overrightarrow{\mathrm{OB}}$によって定まる点$\mathrm{Q}$が領域$D$に含まれるとき,$k$の値の範囲を求めよ.
(2)点$\mathrm{C}$を中心とする半径$\sqrt{6}$の円が領域$D$に含まれるとき,$|\overrightarrow{\mathrm{OC}}|$が最小となる$\mathrm{C}$の座標を求めよ.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。