タグ「円」の検索結果

38ページ目:全908問中371問~380問を表示)
首都大学東京 公立 首都大学東京 2014年 第3問
$xy$平面において,$x$軸の正の部分に中心$\mathrm{A}$をもつ半径$1$の円$C$が,直線$\displaystyle y=x \tan t (0<t<\frac{\pi}{2})$に点$\mathrm{P}$で接している.以下の問いに答えなさい.

(1)点$\mathrm{A}$と点$\mathrm{P}$の$x$座標を求めなさい.
(2)$x$軸の正の部分と円$C$と直線$y=x \tan t$で囲まれる部分を$x$軸のまわりに回転した立体の体積$V(t)$を求めなさい.
(3)極限値$\displaystyle \lim_{t \to +0}tV(t)$を求めなさい.
和歌山県立医科大学 公立 和歌山県立医科大学 2014年 第4問
曲線$y=x^2 (x>0)$を$C_1$とする.この$C_1$と$x$軸の両方に接し,半径が$\displaystyle \frac{1}{2}$の円を$C_2$とする.次の問いに答えよ.

(1)$C_2$の方程式を求めよ.
(2)$C_2$の外部において,$C_1$と$C_2$と$x$軸で囲まれた部分の面積$S$を求めよ.
札幌医科大学 公立 札幌医科大学 2014年 第1問
三角形$\mathrm{ABC}$に内接する半径$R$の円がある.内接円と辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$との接点をそれぞれ$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.また$\alpha=\angle \mathrm{A}$,$\beta=\angle \mathrm{B}$,$\gamma=\angle \mathrm{C}$とする.三角形$\mathrm{ABC}$の面積を$S_1$,三角形$\mathrm{DEF}$の面積を$S_2$とする.

(1)$S_1$を$\displaystyle R,\ \tan \frac{\alpha}{2},\ \tan \frac{\beta}{2},\ \tan \frac{\gamma}{2}$を用いて表せ.
(2)$S_2$を$\displaystyle R,\ \cos \frac{\alpha}{2},\ \cos \frac{\beta}{2},\ \cos \frac{\gamma}{2}$を用いて表せ.

以後$\displaystyle \gamma=\frac{\pi}{2}$とする.

(3)$\displaystyle \frac{S_2}{S_1}$を$\sin \alpha$と$\cos \alpha$を用いて表せ.
(4)$\displaystyle \frac{S_2}{S_1}$の最大値を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2014年 第4問
$xy$平面において,原点$\mathrm{O}$を中心とする半径$4$の円$C$の内側を半径$1$の円$C^\prime$が内接しながら滑ることなく転がるとき,円$C^\prime$上の点$\mathrm{P}$が描く曲線を$X$とする.ただし,点$\mathrm{P}$のはじめの位置は点$\mathrm{P}_0(4,\ 0)$とする.円$C^\prime$の中心$\mathrm{O}^\prime$が原点$\mathrm{O}$の周りを$\theta$だけ回転したときの点$\mathrm{P}$の座標を$(x,\ y)$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OO}^\prime}$の成分を$\theta$を用いて表せ.
(2)$x,\ y$を$\theta$を用いて表せ.
(3)点$\mathrm{P}$における曲線$X$の接線と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とするとき,線分$\mathrm{QR}$の長さは一定であることを示せ.ただし,点$\mathrm{P}$は座標軸上の点ではないものとする.
釧路公立大学 公立 釧路公立大学 2014年 第4問
以下の各問に答えよ.

(1)年利率$r \, \%$,$1$年ごとの複利で$y$万円を預けると,$x$年後に元利合計は$y(1+0.01r)^x$万円となる.ただし,$r$は整数とする.このとき,以下の各問について別添の常用対数表(省略)を用いて答えよ.

(i) 年利率$2 \, \%$で$10$万円を預けると,元利合計が初めて$15$万円を超えるのは何年後か求めよ.
(ii) 元利合計が$10$年で預けた金額の倍以上になるような最小の$r$を求めよ.

(2)曲線:$y=x^3-5x^2+2x+8$がある.以下の各問に答えよ.

(i) 曲線と$x$軸との交点の座標をすべて求めよ.
(ii) 曲線と$y$軸との交点における曲線の接線の方程式を求めよ.
(iii) 曲線と$(2)$で求めた直線で囲まれる図形の面積を求めよ.
宮城大学 公立 宮城大学 2014年 第4問
次の問いに答えなさい.

(1)円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=7$,$\mathrm{AD}=5$であるとき,辺$\mathrm{CD}$の長さを求めよ.
(2)一般に任意の四角形は必ずしも円に内接しない.では,相異なる$4$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$をこの順に並べた四角形$\mathrm{PQRS}$が円に内接するための「角度に関する必要十分条件」を一つだけ簡潔に記せ.ただし,証明は不要である.
(3)平行四辺形$\mathrm{KLMN}$が円に内接すれば,この平行四辺形は長方形であることを証明せよ.
(図は省略)
北九州市立大学 公立 北九州市立大学 2014年 第4問
コインを連続して投げる試行を考える.表が出た回は賞金が得られ,裏が出た回の賞金は$0$円とする.賞金は,$1$回目の試行で表なら$1$円,直前に裏が出て表が出たら$1$円である.裏が出た直後の試行または$1$回目の試行から数えて$n$回($n \geqq 2$)続けて表が出ると,この$n$回目の表に対して$n$円得られるとする.たとえば,$5$回投げて表,表,裏,表,表の順に出た場合に(表,表,裏,表,表)と表記する.この場合には$1+2+0+1+2$の合計$6$円の賞金が得られる.以下の問題に答えよ.

(1)$2$回コインを投げ,$2$回とも表が出る確率を求めよ.
(2)$2$回コインを投げたとき,得られる賞金の期待値を求めよ.
(3)$5$回コインを投げて$3$回表が出たとする.得られる賞金が最も多いときと最も少ないときの賞金の差を求めよ.
(4)$5$回コインを投げたとき,得られる賞金が$4$円である確率を求めよ.
(5)$5$回コインを投げたとき,得られる賞金が$3$円以下である確率を求めよ.
京都府立大学 公立 京都府立大学 2014年 第1問
$\mathrm{O}$を原点とする$xyz$空間内に$5$点$\mathrm{A}(10,\ 0,\ 0)$,$\mathrm{B}(10,\ 5 \sqrt{3},\ 15)$,$\mathrm{C}(8,\ -\sqrt{3},\ -3)$,$\mathrm{D}(8,\ 5 \sqrt{3},\ 15)$,$\mathrm{E}(-4,\ \sqrt{3},\ 3)$をとる.$2$点$\mathrm{O}$,$\mathrm{A}$を通る直線を$\ell_1$,$2$点$\mathrm{O}$,$\mathrm{B}$を通る直線を$\ell_2$,$2$点$\mathrm{C}$,$\mathrm{D}$を通る直線を$\ell_3$,$2$点$\mathrm{C}$,$\mathrm{E}$を通る直線を$\ell_4$とする.$2$つの直線$\ell_1$,$\ell_3$の交点を$\mathrm{F}$,$2$つの直線$\ell_2$,$\ell_3$の交点を$\mathrm{G}$,$2$つの直線$\ell_2$,$\ell_4$の交点を$\mathrm{H}$,$2$つの直線$\ell_1$,$\ell_4$の交点を$\mathrm{I}$とする.以下の問いに答えよ.

(1)$6$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$は同一平面上にあることを示せ.
(2)$4$点$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$,$\mathrm{I}$の座標を求めよ.
(3)四角形$\mathrm{FGHI}$の面積を求めよ.
(4)四角形$\mathrm{FGHI}$に外接する円の中心座標と半径を求めよ.
福岡女子大学 公立 福岡女子大学 2014年 第1問
新しく購入した機械は,購入$1$年目から$1$年間隔で$4$回の定期検査を受けることになっている.検査で異常が見つかる確率は毎回同じで$p (0<p<1)$である.定期検査で異常が見つかった場合のみ修理が行われる.検査は無料であるが,修理は有料である.$1$年目の検査で異常が見つかった場合の修理費用は$80000$円であり,$r$年目($r=2,\ 3,\ 4$)の検査で異常が見つかった場合の修理費用は
\[ \left\{ \begin{array}{ll}
80000 \times r \text{(円)}, & \text{ただし,前回までの検査で異常なしの場合} \\
0 \text{(円)}, & \text{ただし,前回までの検査で修理を受けている場合}
\end{array} \right. \]
である.以下の問に答えなさい.

(1)$r=1,\ 2,\ 3,\ 4$とする.$r$年目の検査で初めて異常が見つかる確率$P$と$r$年目の検査が終わるまで異常が見つからない確率$Q$とをそれぞれ$r$と$p$を用いた式で表しなさい.
(2)購入してから$4$年目の検査が終わるまでの修理費用を$X$で表す.$X$のとり得る値とその確率を表にし,$X$の期待値を$p$の式で表しなさい.
(3)$p=0.1$とする.購入時に$4$年間保証として$70000$円を支払うと,修理費用は無料となる.$4$年間保証に加入することと,修理時に費用を支払うのとでは,どちらが得であるかを$X$の期待値を計算して検討しなさい.
福岡女子大学 公立 福岡女子大学 2014年 第1問
新しく購入した機械は,購入$1$年目から$1$年間隔で$4$回の定期検査を受けることになっている.検査で異常が見つかる確率は毎回同じで$p (0<p<1)$である.定期検査で異常が見つかった場合のみ修理が行われる.検査は無料であるが,修理は有料である.$1$年目の検査で異常が見つかった場合の修理費用は$80000$円であり,$r$年目($r=2,\ 3,\ 4$)の検査で異常が見つかった場合の修理費用は
\[ \left\{ \begin{array}{ll}
80000 \times r \text{(円)}, & \text{ただし,前回までの検査で異常なしの場合} \\
0 \text{(円)}, & \text{ただし,前回までの検査で修理を受けている場合}
\end{array} \right. \]
である.以下の問に答えなさい.

(1)$r=1,\ 2,\ 3,\ 4$とする.$r$年目の検査で初めて異常が見つかる確率$P$と$r$年目の検査が終わるまで異常が見つからない確率$Q$とをそれぞれ$r$と$p$を用いた式で表しなさい.
(2)購入してから$4$年目の検査が終わるまでの修理費用を$X$で表す.$X$のとり得る値とその確率を表にし,$X$の期待値を$p$の式で表しなさい.
(3)$p=0.1$とする.購入時に$4$年間保証として$70000$円を支払うと,修理費用は無料となる.$4$年間保証に加入することと,修理時に費用を支払うのとでは,どちらが得であるかを$X$の期待値を計算して検討しなさい.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。