タグ「円」の検索結果

36ページ目:全908問中351問~360問を表示)
上智大学 私立 上智大学 2014年 第2問
$xyz$空間において,$xy$平面に原点$\mathrm{O}(0,\ 0,\ 0)$で接し,中心が$\mathrm{C}(0,\ 0,\ 1)$であるような球面を$S$とする.点$\mathrm{P}(2 \sqrt{3},\ 0,\ 3)$に点光源をおくとき,$xy$平面上にできる$S$の影$S^\prime$を考える.

(1)点$\mathrm{P}$から球面$S$に引いた接線の一つと球面との接点を$\mathrm{A}$とする.線分$\mathrm{PA}$の長さは$\sqrt{[キ]}$である.$\angle \mathrm{CPA}=\theta$とすると,$\displaystyle \sin \theta=\frac{[ク]}{[ケ]}$である.

(2)球面$S$上で光が当たる部分と影の部分との境界は,$\displaystyle \left( \frac{\sqrt{[コ]}}{[サ]},\ [シ],\ \frac{[ス]}{[セ]} \right)$を中心とし,半径が$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$の円である.
(3)影$S^\prime$は長軸の長さが$[チ] \sqrt{[ツ]}$の楕円の内部である.
上智大学 私立 上智大学 2014年 第1問
次の$[あ]$~$[お]$に当てはまるものを,下の選択肢から選べ.

(1)$\displaystyle x=-\frac{2}{3}$は$3x^2-13x-10=0$であるための$[あ]$
(2)$n$を自然数とする.$n^2$が$5$の倍数であることは,$n$が$5$の倍数であるための$[い]$
(3)$a,\ b$を自然数とする.$(a+b)^2$が奇数であることは,$ab$が偶数であるための$[う]$
(4)平面上の異なる$2$つの円$C$,$C^\prime$の半径をそれぞれ$r$,$r^\prime$とし,中心間の距離を$d$とする.ただし,$r<r^\prime$とする.このとき,$C$と$C^\prime$が共有点をもたないことは,$d>r+r^\prime$であるための$[え]$
(5)$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\mathrm{CA}=7$の$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$の延長上に$\mathrm{CD}=4$となる点$\mathrm{D}$をとり,辺$\mathrm{AC}$上に$\mathrm{AE}=3$となる点$\mathrm{E}$をとる.このとき,辺$\mathrm{AB}$上の点$\mathrm{F}$に対して,$\mathrm{AF}=3$であることは,$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が一直線上にあるための$[お]$
選択肢:

\mon[$①$] 必要条件であるが十分条件ではない.
\mon[$②$] 十分条件であるが必要条件ではない.
\mon[$③$] 必要十分条件である.
\mon[$④$] 必要条件でも十分条件でもない.
立教大学 私立 立教大学 2014年 第3問
座標平面上に放物線$\displaystyle y=x^2+\frac{1}{16}$と円$x^2+y^2-3y+1=0$がある.このとき,次の問に答えよ.

(1)円の中心の座標と半径を求めよ.
(2)円の中心と円周上の点$\displaystyle \left( \frac{1}{2},\ \frac{1}{2} \right)$を通る直線の傾きを求めよ.
(3)円周上の点$\displaystyle \left( \frac{1}{2},\ \frac{1}{2} \right)$における円の接線の方程式を求めよ.
(4)$(3)$で求めた接線と放物線のすべての交点の座標を求めよ.
(5)$(3)$で求めた接線と放物線で囲まれた部分の面積を求めよ.
立教大学 私立 立教大学 2014年 第2問
$C_1$を半径$1$の円とする.円$C_1$に内接する正方形を$S_1$とする.正方形$S_1$に内接する円を$C_2$とする.以下同様に,円$C_n$に内接する正方形を$S_n$とし,正方形$S_n$に内接する円を$C_{n+1}$とする.このとき,次の問に答えよ.

(1)円$C_2$の半径を$r_2$とする.$r_2$を求めよ.
(2)円$C_n$の半径を$r_n$とする.$r_n$を$n$の式で表せ.
(3)正方形$S_n$の面積を$A_n$とし,$T_n=A_1+A_2+A_3+\cdots +A_n$とする.$T_n$を$n$の式で表せ.
(4)$T_n$が円$C_1$の面積よりも大きくなるような自然数$n$のうち,最小のものを求めよ.
立教大学 私立 立教大学 2014年 第1問
次の空欄$[ア]$~$[サ]$に当てはまる数または式を記入せよ.

(1)$(\log_3 x)(\log_3 9x)-6 \log_9 x-6=0$を満たす$x$の値をすべて求めると,$[ア]$である.
(2)座標平面上に点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(3,\ 7)$,$\mathrm{C}(-1,\ 5)$がある.このとき,点$\mathrm{C}$を通り直線$\mathrm{AB}$と直交する直線の方程式は$y=[イ]$である.
(3)実数$x$が方程式$(1+i)x^2-(5+i)x+6-2i=0$を満たすとき,$x=[ウ]$である.ただし,$i$は虚数単位とする.
(4)$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\tan \theta=\sqrt{7}$のとき,$\sin \theta=[エ]$である.
(5)$3$つのさいころを同時に投げたとき,出た目の最小値が$5$となる確率は$[オ]$である.
(6)整式$P(x)=x^3+ax^2+bx+c$は$x^2-3x+2$で割ったときの余りが$-2x+7$であり,関数$y=P(x)$は$x=1$で極値をとる.このとき,$a=[カ]$,$b=[キ]$,$c=[ク]$である.
(7)$|\overrightarrow{a}|=2$,$|\overrightarrow{b}|=3$,$|\overrightarrow{a}+\overrightarrow{b}|=\sqrt{5}$のとき,$\overrightarrow{a} \cdot \overrightarrow{b}=[ケ]$である.
(8)直線$y=2x+k$が円$x^2-2x+y^2=0$と共有点をもつとき,$[コ] \leqq k \leqq [サ]$である.
南山大学 私立 南山大学 2014年 第1問
$[ ]$の中に答を入れよ.

(1)$a$を実数とするとき,不等式$x^2-2ax+2a^2+a-1>0$がすべての実数$x$に対して成り立つような$a$の値の範囲を求めると$[ア]$である.
(2)$n$を整数とするとき,$\displaystyle \frac{3n-2}{5}$より大きな整数のうち最小のものが$6$となるような$n$の値をすべて求めると$n=[イ]$である.
(3)複素数$\displaystyle z=\frac{2-i}{1+i}$について,$z^2-z$を計算すると$z^2-z=[ウ]$である.さらに,$z^4-2z^3+3z^2-3z$を計算すると$z^4-2z^3+3z^2-3z=[エ]$である.
(4)$a>0$とし,$x>0$において$\displaystyle y=\left( \log_{10}ax^2 \right) \left( \log_{10} \frac{a}{x} \right)$を考える.$t=\log_{10} x$,$b=\log_{10}a$として$y$を$t$と$b$で表すと$y=[オ]$である.また,$x$の方程式$\displaystyle \left( \log_{10}ax^2 \right) \left( \log_{10} \frac{a}{x} \right)=1$が異なる$2$つの解$\alpha,\ \beta$をもつとき,$\alpha\beta$を$a$で表すと$\alpha\beta=[カ]$である.
(5)座標平面上の$3$点$\mathrm{A}(4,\ 6)$,$\mathrm{B}(1,\ 3)$,$\mathrm{C}(4,\ 2)$を考える.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る円の半径$r$を求めると$r=[キ]$である.また,点$\mathrm{A}$を通る直線が,この円と$\mathrm{A}$とは異なる点$\mathrm{P}$で交わり,$\mathrm{AP}=\sqrt{2}r$となるとき,この直線の傾き$k$を求めると$k=[ク]$である.
名城大学 私立 名城大学 2014年 第3問
$xy$平面上に,円$C:x^2+y^2=1$,$C$上に点$\displaystyle \mathrm{A} \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$,および$C$の外に点$\displaystyle \mathrm{B} \left( \frac{3 \sqrt{5}}{5},\ -\frac{\sqrt{5}}{5} \right)$をとる.次の問に答えよ.

(1)$\mathrm{A}$における接線の方程式を求めよ.
(2)$\mathrm{B}$から$C$に引いた接線の傾きを求めよ.
(3)$\mathrm{B}$から$C$に引いた$2$本の接線の接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.直線$\mathrm{PQ}$の方程式を求めよ.
東京医科大学 私立 東京医科大学 2014年 第1問
次の$[ ]$を埋めよ.

(1)座標平面上の点$\displaystyle \mathrm{A} \left( 1,\ \frac{1}{4} \right)$を通る$2$曲線$\displaystyle C_1:y=\frac{1}{4}x^2$,$C_2:ax^2+by^2=1$($a,\ b$は正の定数)を考える.点$\mathrm{A}$における$2$曲線$C_1,\ C_2$の接線が直交するとき
\[ a=\frac{[ア]}{[イ]},\quad b=\frac{[ウエ]}{[オ]} \]
である.
(2)座標平面の点$\mathrm{P}(x,\ y)$が円$\displaystyle C:(x-1)^2+(y-1)^2=\frac{1}{16}$上を動くとき,式
\[ \frac{x}{y}+\frac{y}{x} \]
がとる最大値を$M$とすれば
\[ M=\frac{[カキ]}{[クケ]} \]
である.
東京都市大学 私立 東京都市大学 2014年 第4問
楕円$x^2+3y^2=2$を$C_1$とし,円$x^2+y^2=1$を$C_2$とする.このとき,次の問に答えよ.

(1)$C_1$を図示せよ.
(2)$C_1$と$C_2$との$4$つの交点の座標は,$(p,\ q)$,$(-p,\ q)$,$(-p,\ -q)$,$(p,\ -q)$と表される.$p,\ q$を求めよ.ただし,$p>0$,$q>0$とする.
(3)楕円$C_1$で囲まれた図形のうち,$0 \leqq x \leqq p$となる部分の面積を求めよ.ただし,$p$は$(2)$で求めたものとする.
東京都市大学 私立 東京都市大学 2014年 第1問
次の問に答えよ.

(1)$\displaystyle 0<\theta<\frac{\pi}{2}$とし,$\displaystyle \sin \theta=\frac{1}{4}$であるとする.$\cos 2\theta,\ \cos 3\theta$の値を求めよ.
(2)$x$軸に接し,点$(3,\ 4)$を通る円の中心が描く軌跡の方程式を求めよ.
(3)硬貨を$3$回投げるとき,途中においてそれまでに表の出た回数がつねに裏の出た回数より多いのは,$1$回目表,$2$回目表,$3$回目表となる場合と,$1$回目表,$2$回目表,$3$回目裏となる場合の$2$通りである.硬貨を$5$回投げるとき,途中においてそれまでに表の出た回数がつねに裏の出た回数よりも多く,最終的に表が$3$回出る確率を求めよ.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。