タグ「円」の検索結果

32ページ目:全908問中311問~320問を表示)
金沢工業大学 私立 金沢工業大学 2014年 第3問
$m$を定数とする.$\mathrm{O}$を原点とする座標平面において,円$x^2+y^2=4$と直線$y=mx+4$が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わっている.$2$点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$\alpha,\ \beta$とする.

(1)$\displaystyle \alpha+\beta=\frac{[アイ] m}{[ウ]+m^2},\ \alpha\beta=\frac{[エオ]}{[ウ]+m^2}$である.
(2)$\displaystyle |\overrightarrow{\mathrm{AB}}|=\frac{[カ] \sqrt{m^2-[キ]}}{\sqrt{[ク]+m^2}}$である.
(3)$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=0$のとき,$m=\pm \sqrt{[ケ]}$,$|\overrightarrow{\mathrm{AB}}|=[コ] \sqrt{[サ]}$である.
大阪工業大学 私立 大阪工業大学 2014年 第2問
円$C:x^2+y^2=20$と直線$y=2x$の第$1$象限にある共有点を$\mathrm{P}$とし,$x$軸に関して点$\mathrm{P}$と対称な点を$\mathrm{Q}$とする.このとき,次の空所を埋めよ.

(1)点$\mathrm{P}$の座標は$([ア],\ [イ])$であり,点$\mathrm{Q}$の座標は$([ウ],\ [エ])$である.
(2)円$C$の点$\mathrm{P}$における接線$\ell$の方程式は$[オ]$である.
(3)$(2)$で求めた接線$\ell$と$x$軸の共有点$\mathrm{M}$の$x$座標は$[カ]$である.
(4)$\overrightarrow{\mathrm{MP}} \cdot \overrightarrow{\mathrm{MQ}}=[キ]$であり,$|\overrightarrow{\mathrm{MP}}|=[ク]$である.また,$\cos \angle \mathrm{PMQ}=[ケ]$である.
大阪工業大学 私立 大阪工業大学 2014年 第2問
円$C:x^2+y^2=20$と直線$y=2x$の第$1$象限にある共有点を$\mathrm{P}$とし,$x$軸に関して点$\mathrm{P}$と対称な点を$\mathrm{Q}$とする.このとき,次の空所を埋めよ.

(1)点$\mathrm{P}$の座標は$([ア],\ [イ])$であり,点$\mathrm{Q}$の座標は$([ウ],\ [エ])$である.
(2)円$C$の点$\mathrm{P}$における接線$\ell$の方程式は$[オ]$である.
(3)$(2)$で求めた接線$\ell$と$x$軸の共有点$\mathrm{M}$の$x$座標は$[カ]$である.
(4)$\overrightarrow{\mathrm{MP}} \cdot \overrightarrow{\mathrm{MQ}}=[キ]$であり,$|\overrightarrow{\mathrm{MP}}|=[ク]$である.また,$\cos \angle \mathrm{PMQ}=[ケ]$である.
金沢工業大学 私立 金沢工業大学 2014年 第6問
原点を$\mathrm{O}$とする座標平面上に点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ -1)$をとる.点$\displaystyle \left( \frac{1}{2},\ 0 \right)$を中心とする半径$\displaystyle \frac{1}{2}$の円$C$を考える.$C$上の点で,第$1$象限にある点を$\mathrm{P}$とし,$\angle \mathrm{POA}=\theta$とする.

(1)$\displaystyle \angle \mathrm{OPA}=\frac{\pi}{[ケ]}$であり,$\displaystyle \triangle \mathrm{POA}=\frac{1}{[コ]} \sin \theta \cos \theta$である.
(2)四辺形$\mathrm{OBAP}$の面積は$\displaystyle \frac{1}{[サ]}+\frac{1}{[シ]} \sin 2\theta$である.
(3)$\displaystyle \triangle \mathrm{POB}=\frac{1}{[ス]}+\frac{1}{[セ]} \cos 2\theta$である.
(4)$\triangle \mathrm{PBA}$の面積を$S$とすると,$\displaystyle S=\frac{1}{[ソ]}+\frac{\sqrt{[タ]}}{[チ]} \sin \left( 2\theta-\frac{\pi}{[ツ]} \right)$であり,$S$は$\displaystyle \theta=\frac{[テ]}{[ト]} \pi$で最大値$\displaystyle \frac{1+\sqrt{[ナ]}}{[ニ]}$をとる.
中京大学 私立 中京大学 2014年 第1問
以下の各問で,$[ ]$にあてはまる数値または記号を求めよ.

(1)放物線$y=ax^2+bx+c (a>0)$が点$(0,\ 9)$を通るとき,
\[ c=[ア] \]
である.さらに,この放物線が点$(3,\ 3)$を通り,放物線の頂点が直線$16x-4y=29$上にあるとき,
\[ (a,\ b)=([イ],\ -[ウ]) \ \text{または} \ \left( \frac{[エ][オ]}{[カ]},\ -\frac{[キ][ク]}{3} \right) \]
である.
(2)$\mathrm{AB}=\mathrm{AC}=2$,$\angle \mathrm{BAC}={90}^\circ$である$\triangle \mathrm{ABC}$の内接円の半径は
\[ [ア]-\sqrt{2} \]
である.また,この内接円に外接し,辺$\mathrm{AB}$,辺$\mathrm{AC}$に接する円の半径は
\[ [イ][ウ]-[エ] \sqrt{2} \]
である.
(3)初項が$a$($a$は自然数),公差が$4$の等差数列$\{a_n\}$と,$a_n$を$9$で割った余りの数列$\{b_n\}$があり,$\displaystyle S_n=\sum_{k=1}^n b_k$とする.$a=1$とするとき,$S_n>2014$となる最小の$n$は
\[ [ア][イ][ウ] \]
であり,
\[ S_{[ア][イ][ウ]}=20 [エ][オ] \]
である.また,$S_n$がちょうど$2014$となる$a$の最小値は
\[ [カ] \]
である.
(4)関数$\displaystyle f(\theta)=2(\sin \theta+\cos \theta)^3-9(\sin \theta+\cos \theta) \left( -\frac{\pi}{4} \leqq \theta \leqq \frac{\pi}{4} \right)$は$\displaystyle \theta=\frac{\pi}{6}$のとき,
\[ f \left( \frac{\pi}{6} \right)=-[ア]-[イ] \sqrt{[ウ]} \]
となる.また,
$\displaystyle \theta=\frac{\pi}{[エ][オ]}$のとき,最小値$-[カ] \sqrt{[キ]}$

をとり,

$\displaystyle \theta=-\frac{\pi}{[ク]}$のとき,最大値$[ケ]$

をとる.
金沢工業大学 私立 金沢工業大学 2014年 第5問
原点を$\mathrm{O}$とする座標平面において,次の極方程式で表される$2$つの曲線を考える.
\[ r=f(\theta)=3 \cos \theta,\quad r=g(\theta)=1+\cos \theta \]
ただし,$0 \leqq \theta<2\pi$とする.また,極座標が$(f(\theta),\ \theta)$,$(g(\theta),\ \theta)$である点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.

(1)点$\mathrm{P}$は,中心が直交座標で$\displaystyle \left( \frac{[ア]}{[イ]},\ [ウ] \right)$であり,半径が$\displaystyle \frac{[エ]}{[オ]}$である円の周上を動く.
(2)点$\mathrm{P}(f(\theta),\ \theta)$と点$\mathrm{Q}(g(\theta),\ \theta)$の間の距離は$\displaystyle \theta=\frac{\pi}{[カ]}$および$\displaystyle \frac{[キ]}{[ク]}\pi$のとき最小値$[ケ]$をとり,$\theta=[コ]$のとき最大値$[サ]$をとる.
(3)線分$\mathrm{PQ}$の中点が原点$\mathrm{O}$となるとき,点$\mathrm{P}$の直交座標は$\displaystyle \left( \frac{[シ]}{[スセ]},\ \pm \frac{[ソ] \sqrt{[タチ]}}{[ツテ]} \right)$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2014年 第4問
原点$\mathrm{O}$を中心とした半径$1$の円$C$がある.円$C$上の$1$点$\mathrm{A}(a_1,\ a_2)$,$a_i>0$,$i=1,\ 2$を考える.$\mathrm{OA}$が$x$軸となす角度を$\theta$とする.

(1)円$C^\prime$を中心$(b_1,\ b_2)$,$b_i>0$,$i=1,\ 2$,半径$1$の円とし,点$\mathrm{A}$と$(1,\ 0)$で円$C$と交わっているものとすると,$(b_1,\ b_2)=[$14$]$である.また円$C^\prime$の点$\mathrm{A}$における接線の方程式は$[$15$]$である.
(2)次に$\theta$を限りなく$0$に近づけていくとき,
\[ \theta,\ \sin \theta,\ \sqrt{2(1-\cos \theta)},\ 1-\cos \theta+\sin \theta \]
の値の大小関係が定まり,これらを小さい順に並べて,$a<b<c<d$とすると
\[ a=[$16$],\ b=[$17$],\ c=[$18$],\ d=[$19$] \]
であり,$\displaystyle \frac{d-a}{bc}$は$[$20$]$に近づく.
広島修道大学 私立 広島修道大学 2014年 第2問
$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(0,\ 3)$がある.このとき,次の問に答えよ.

(1)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る円の方程式を求めよ.
(2)点$\mathrm{C}$が$(1)$で求めた円の周上を動くとき,$\triangle \mathrm{ABC}$の面積が最大となるような点$\mathrm{C}$の座標を求めよ.
広島修道大学 私立 広島修道大学 2014年 第2問
$3$点$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(3,\ 4)$,$\mathrm{C}(6,\ -2)$について,次の問に答えよ.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る円の方程式を求めよ.
(2)$(1)$で求めた円と直線$y=2x+k$が異なる$2$点で交わるとき,定数$k$の値の範囲を求めよ.
早稲田大学 私立 早稲田大学 2014年 第3問
直線$4x+3y=48$,$3x-4y=0$と$y$軸のつくる三角形に内接する円の中心の座標は$\displaystyle \left( \frac{[キ]}{[ク]},\ \frac{[ケ]}{[コ]} \right)$である.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。