タグ「円」の検索結果

27ページ目:全908問中261問~270問を表示)
愛知教育大学 国立 愛知教育大学 2014年 第1問
円$C:x^2+y^2=1$上に$2$点$\mathrm{N}(0,\ 1)$,$\mathrm{S}(0,\ -1)$をとる.また$x$軸上に点$\mathrm{P}(a,\ 0) (a>1)$をとり,直線$\mathrm{NP}$と円$C$との交点で,点$\mathrm{N}$とは異なる点を$\mathrm{Q}$とする.さらに,直線$\mathrm{SQ}$と$x$軸との交点を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)直線$\mathrm{NP}$の方程式を求め,点$\mathrm{Q}$の座標を$a$を用いて表せ.
(2)直線$\mathrm{SQ}$の方程式を求め,点$\mathrm{R}$の座標を$a$を用いて表せ.
(3)線分$\mathrm{PR}$の長さが$2$になるときの$a$の値を求めよ.
愛知教育大学 国立 愛知教育大学 2014年 第2問
平面上の四角形$\mathrm{ABCD}$において,$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が次の$(ⅰ)$,$(ⅱ)$,$(ⅲ)$の条件をみたしているとする.

$(ⅰ)$ $\mathrm{AB}=1$,$\mathrm{BC}=5$,$\mathrm{CD}=6$,$\mathrm{DA}=10$
$(ⅱ)$ $3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{D}$は同じ直線上にはない.
$(ⅲ)$ $3$点$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$は同じ直線上にはない.

また,$\angle \mathrm{DAB}=\alpha$,$\angle \mathrm{BCD}=\beta$とし,線分$\mathrm{BD}$の長さを$d$とする.このとき,以下の問いに答えよ.

(1)$d^2$を$\alpha$を用いて表せ.
(2)$d^2$を$\beta$を用いて表せ.
(3)$\alpha,\ \beta$がみたす関係式を求めよ.
(4)四角形$\mathrm{ABCD}$が円に内接するとき,$\alpha,\ \beta$と円の半径$R$を求めよ.
愛知教育大学 国立 愛知教育大学 2014年 第7問
$\displaystyle 0<t<\frac{\pi}{2}$とする.座標平面上に,原点$\mathrm{O}$を中心とする単位円$C$上の点$\mathrm{P}(\cos t,\ \sin t)$と,$x$軸上の点$\mathrm{Q}(\cos t,\ 0)$をとり,点$\mathrm{P}$における$C$の接線を$\ell$とする.また,点$\mathrm{Q}$から$\ell$に下ろした垂線と$\ell$との交点を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\mathrm{PR}$と$\mathrm{QR}$を$t$を用いて表せ.
(3)$(2)$で求めた$\mathrm{PR}$を$x(t)$,$\mathrm{QR}$を$y(t)$とする.点$\mathrm{S}(x(t),\ y(t))$の軌跡を求めよ.
香川大学 国立 香川大学 2014年 第4問
$0<r<R$とし,半径$R$の円に半径$r$の小円をいくつか外接させる.ただし,小円どうしは接するか互いに交わらないものとする(図参照).このときの小円の個数の最大値を$n$としたとき,次の問に答えよ.必要ならば,下の数表(三角関数表)を用いてよい.
(図は省略)

$*$ 三角関数表は省略した.
(1)$R=3r$のとき,$n$を求めよ.
(2)$\displaystyle n \leqq \pi \left( \frac{R}{r}+1 \right)$を示せ.
小樽商科大学 国立 小樽商科大学 2014年 第4問
下図のように半径$1$の円$C_1$の内部に半径$x$の円$C_2$と半径$(1-x)$の円$C_3$が内接している.ただし$0<x<1$とする.円$C_1$の内部で円$C_2$と円$C_3$の外部の部分(図の斜線部分)の面積の最大値を求めよ.
(図は省略)
群馬大学 国立 群馬大学 2014年 第3問
座標平面において,動点$\mathrm{P}(x,\ y)$は単位円$C$上の点$\mathrm{Q}(1,\ 0)$を出発し,$C$上を反時計回りに$1$周する.弧$\mathrm{PQ}$の長さは,出発してからの時間に比例する.$\mathrm{P}$が$1$周するのに$T$秒かかる.このとき,以下の問いに答えよ.

(1)出発してから$t$秒後($0 \leqq t \leqq T$)の点$\mathrm{P}(x,\ y)$について$x,\ y$を$t$と$T$を用いて表せ.
(2)出発してから$t$秒後($\displaystyle 0 \leqq t \leqq \frac{T}{4}$)の点$\mathrm{P}(x,\ y)$に対して$z=2x^2+xy+y^2$を考える.$z$の最大値と最小値を求めよ.また最大値,最小値をとるのは出発してから何秒後か$T$を用いて表せ.
群馬大学 国立 群馬大学 2014年 第3問
座標平面において,動点$\mathrm{P}(x,\ y)$は単位円$C$上の点$\mathrm{Q}(1,\ 0)$を出発し,$C$上を反時計回りに$1$周する.弧$\mathrm{PQ}$の長さは,出発してからの時間に比例する.$\mathrm{P}$が$1$周するのに$T$秒かかる.このとき,以下の問いに答えよ.

(1)出発してから$t$秒後($0 \leqq t \leqq T$)の点$\mathrm{P}(x,\ y)$について$x,\ y$を$t$と$T$を用いて表せ.
(2)出発してから$t$秒後($\displaystyle 0 \leqq t \leqq \frac{T}{4}$)の点$\mathrm{P}(x,\ y)$に対して$z=2x^2+xy+y^2$を考える.$z$の最大値と最小値を求めよ.また最大値,最小値をとるのは出発してから何秒後か$T$を用いて表せ.
富山大学 国立 富山大学 2014年 第2問
点$\mathrm{P}_0$を$xy$平面の原点とし,点$\mathrm{P}_1$の座標を$(1,\ 0)$とする.点$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\cdots$を次のように定める.$n=1,\ 2,\ 3,\ \cdots$に対して,点$\mathrm{P}_{n-1}$を中心として点$\mathrm{P}_n$を反時計回りに$\theta (0<\theta<\pi)$だけ回転させた点を$\mathrm{Q}_n$とし,点$\mathrm{P}_{n+1}$を$\overrightarrow{\mathrm{P}_{n-1} \mathrm{Q}_n}=\overrightarrow{\mathrm{P}_n \mathrm{P}_{n+1}}$となるようにとる.このとき,次の問いに答えよ.

(1)$k=0,\ 1,\ 2,\ \cdots$に対して,

$\displaystyle \sin \frac{\theta}{2} \cos k \theta=\frac{1}{2} \left\{ -\sin \left( \frac{2k-1}{2} \theta \right)+\sin \left( \frac{2k+1}{2} \theta \right) \right\}$

$\displaystyle \sin \frac{\theta}{2} \sin k \theta=\frac{1}{2} \left\{ \cos \left( \frac{2k-1}{2} \theta \right)-\cos \left( \frac{2k+1}{2} \theta \right) \right\}$

が成り立つことを示せ.
(2)$n=1,\ 2,\ 3,\ \cdots$に対して,

$\displaystyle 1+\cos \theta+\cdots +\cos n\theta=\frac{1}{2 \sin \displaystyle\frac{\theta}{2}} \left\{ \sin \left( \displaystyle\frac{2n+1}{2} \theta \right)+\sin \frac{\theta}{2} \right\}$

$\displaystyle \sin \theta+\cdots +\sin n\theta=\frac{1}{2 \sin \displaystyle\frac{\theta}{2}} \left\{ -\cos \left( \displaystyle\frac{2n+1}{2} \theta \right)+\cos \frac{\theta}{2} \right\}$

が成り立つことを示せ.
(3)点$\mathrm{P}_n$の座標を$(x_n,\ y_n)$とおくとき,$x_n$および$y_n$を求めよ.
(4)すべての点$\mathrm{P}_n (n=0,\ 1,\ 2,\ \cdots)$を通る円の方程式を求めよ.
山梨大学 国立 山梨大学 2014年 第1問
次の問いに答えよ.

(1)標高$376 \, \mathrm{m}$の地点から富士山に登りはじめた.一般に,$2$地点の大気圧の比はその$2$地点の高度差の指数関数である.この日の大気圧は,高度が$850 \, \mathrm{m}$上昇するごとに$10 \, \%$ずつ減少していた.登りはじめた地点の大気圧は$990 \, \mathrm{hPa}$であった.この日の富士山の山頂$3776 \, \mathrm{m}$での大気圧は何$\mathrm{hPa}$か.答は小数第$1$位を四捨五入し,整数で答えよ.
(2)ある店において,原価が$200$円,定価が$350$円の商品$\mathrm{A}$の$1$日の売り上げ総数を$N$とする.$\mathrm{A}$の売り値が定価通りのときには$N=35$であり,定価から原価まで売り値を$10$円下げるごとに,$N$は$5$ずつ増えることがわかっている.また,売り値は定価を超えず,原価も下回らないとする.この店での$1$日の$\mathrm{A}$の売り上げ全体の利益を最大にする売り値と,そのときの$N$を求めよ.
(3)$\log_23,\ \log_47,\ \log_828$を小さい順に並べよ.
(4)空間の$3$点$\mathrm{A}(1,\ 1,\ 1)$,$\mathrm{B}(0,\ 2,\ 3)$,$\mathrm{C}(-1,\ 0,\ 0)$の定める平面を$\alpha$とする.点$\mathrm{P}(2,\ 3,\ z)$が平面$\alpha$上にあるとき,$z$の値を求めよ.
小樽商科大学 国立 小樽商科大学 2014年 第1問
次の$[ ]$の中を適当に補いなさい.

(1)$1$回の操作で溶液の不純物の$25 \, \%$を除去出来る装置で不純物を除去するとき,この操作を複数回行い,元の不純物の$98 \, \%$以上を除去するには,最低何回以上この操作をする必要があるかを求めると$[ ]$回以上.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(2)中心が$(0,\ 1)$で半径$1$の円がある.下図のように,この円の直径$\mathrm{AB}$と原点$\mathrm{O}(0,\ 0)$と,$x$軸上の点$\mathrm{C}(1,\ 0)$をとる.$\angle \mathrm{AOC}={60}^\circ$とする.点$\mathrm{A}$の$x$座標を$t$(ただし$t>0$)とし,$\triangle \mathrm{OAB}$の面積を$S$とするとき,$t$と$S$を求めると$(t,\ S)=[ ]$.
(図は省略)
(3)$4$桁の正の整数$n$に対し,千の位,百の位,十の位,一の位の数字をそれぞれ$a,\ b,\ c,\ d$とする.$a>b>c>d$を満たす$n$は全部で$p$個あり,$a>c$かつ$b>d$を満たす$n$は全部で$q$個ある.このとき,$p$と$q$を求めると$(p,\ q)=[ ]$.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。