タグ「円」の検索結果

19ページ目:全908問中181問~190問を表示)
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)座標平面上の円$C:(x-2)^2+(y-1)^2=5$に対して以下が成り立つ.

(i) $C$上の点で,その点における$C$の接線の傾きが$-2$となる点は$([ア],\ [イ])$と$([ウ],\ [エ])$である.(ただし,$[ア]<[ウ]$とする.)
(ii) 点$(x,\ y)$が$C$上を動くとき,$2x+y$の値は
$(x,\ y)=([オ],\ [カ])$のとき最大値$[キ][ク]$をとり,
$(x,\ y)=([ケ],\ [コ])$のとき最小値$[サ]$をとる.

(2)座標平面上で点$(x,\ y)$が$x^2-4 |x|+y^2-2 |y|=0$を満たしながら動くとき,$x^2+y^2$の値は$(x,\ y)=(0,\ 0)$のとき$0$になるが,それ以外の場合のとり得る値の範囲は
\[ [シ] \leqq x^2+y^2 \leqq [ス][セ] \]
である.
(3)座標平面上で$x^2-4 |x|+y^2-2 |y| \leqq 0$を満たす点$(x,\ y)$全体のなす領域を$S$とする.

(i) 点$(x,\ y)$が$S$上を動くとき,$x^2+y^2$のとり得る値の範囲は
\[ [ソ] \leqq x^2+y^2 \leqq [タ][チ] \]
である.
(ii) $S$の面積は$[ツ][テ]\pi+[ト][ナ]$である.
東京理科大学 私立 東京理科大学 2015年 第3問
座標平面上の放物線$\displaystyle C_1:y=2x^2+2x+\frac{1}{2}$と$\displaystyle C_2:y=-2x^2+2x+\frac{3}{2}$に対して次の問いに答えよ.なお,必要なら \ \tbox{\rule[-0.43em]{0pt}{1.6em}\hspace{0.33em} $1$\hspace{0.57em}} $(1)$の結果を使ってもよい.

(1)$C_1$上の点$\displaystyle \mathrm{A}(t,\ 2t^2+2t+\frac{1}{2})$と$C_2$上の点$\displaystyle \mathrm{B}(s,\ -2s^2+2s+\frac{3}{2})$に対し,$C_1$の点$\mathrm{A}$における接線の傾きと$C_2$の点$\mathrm{B}$における接線の傾きが等しくなるための必要十分条件を$t$と$s$の式で表せ.
(2)$(1)$の条件を満たすようなどんな実数$t,\ s$に対しても,直線$\mathrm{AB}$はある共通の点$\mathrm{M}$を通る.$\mathrm{M}$の座標を求めよ.
(3)$\mathrm{M}$を$(2)$で求めた点とする.$C_1$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(4)$\mathrm{M}$を$(2)$で求めた点とする.$C_2$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(5)$(1)$の条件を満たすような実数$t,\ s$に対して,線分$\mathrm{AB}$の長さがとり得る値の最小値を求めよ.
早稲田大学 私立 早稲田大学 2015年 第5問
直線
\[ \ell:x \sin \theta+y \cos \theta=1 \quad \left( 0<\theta<\frac{\pi}{2} \right) \]
に接する$4$つの円を考える.

$x \sin \theta+y \cos \theta<1$の領域で$2$つの円は互いに接しており,そのうち$1$つの円は直線$\ell$と$x$軸に,もう一方の円は直線$\ell$と$y$軸に接している.これらの円の半径はいずれも$r_1$である.このとき
\[ r_1=\frac{1}{[ソ]t^2+[タ]t} \quad (\text{ただし}t=\sin \theta+\cos \theta) \]
となる.
残りの$2$つの円は,$x \sin \theta+y \cos \theta>1$の領域で互いに接しており,そのうち$1$つの円は直線$\ell$と$x$軸に,もう一方の円は直線$\ell$と$y$軸に接している.これらの円の半径はいずれも$r_2$である.このとき
\[ r_2=\frac{1}{[チ]t^2+[ツ]t+[テ]} \quad (\text{ただし}t=\sin \theta+\cos \theta) \]
となる.
したがって
\[ [ト]<\frac{r_1}{r_2} \leqq \sqrt{[ナ]}+[ニ] \]
である.
早稲田大学 私立 早稲田大学 2015年 第1問
次の各問に答えよ.

(1)整式$P(x)$を$(x-1)(x-4)$で割ると余りは$43x-35$であり,$(x-2)(x-3)$で割ると余りは$39x-55$であるという.このとき,$P(x)$を
\[ (x-1)(x-2)(x-3)(x-4) \]
で割ったときの余りを求めよ.
(2)座標平面に$4$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(1,\ -1)$,$\mathrm{C}(-1,\ 1)$,$\mathrm{D}(-1,\ -1)$がある.実数$x$が$0 \leqq x \leqq 1$の範囲にあるとき,$2$点$\mathrm{P}(x,\ 0)$,$\mathrm{Q}(-x,\ 0)$を考える.このとき,$5$本の線分の長さの和
\[ \mathrm{AP}+\mathrm{BP}+\mathrm{PQ}+\mathrm{CQ}+\mathrm{DQ} \]
が最小となるような$x$の値を求めよ.ただし,$x=0$のときは$\mathrm{PQ}=0$とする.
(3)$1$から$10$までの自然数からなる集合$\{1,\ 2,\ \cdots,\ 10\}$の中から異なる$3$つの数を選ぶとする.このとき,選んだ数の和が$3$で割り切れる確率を求めよ.
(4)座標平面において楕円$\displaystyle E:\frac{x^2}{a}+y^2=1$を考える.ただし,$a$は$a>0$をみたす定数とする.楕円$E$上の点$\mathrm{A}(0,\ 1)$を中心とする円$C$が,次の$2$つの条件をみたしているとする.

(i) 楕円$E$は円$C$とその内部に含まれ,$E$と$C$は$2$点$\mathrm{P}$,$\mathrm{Q}$で接する.
(ii) $\triangle \mathrm{APQ}$は正三角形である.

このとき,$a$の値を求めよ.
福岡大学 私立 福岡大学 2015年 第3問
曲線$y=e^{-x^2}$上の$3$点$\mathrm{P}(0,\ 1)$,$\mathrm{Q}(t,\ e^{-t^2})$,$\mathrm{R}(-t,\ e^{-t^2})$を通る円を$C$とする.円$C$の半径$r$を$t$の関数とみて$r(t)$と表すと,$r(t)=[ ]$である.また,極限$\displaystyle \lim_{t \to 0} r(t)$の値は$[ ]$である.ただし,$e$は自然対数の底とする.
日本女子大学 私立 日本女子大学 2015年 第1問
正の実数$t$に対して方程式
\[ x^2+y^2-2tx-4ty+4t^2=0 \]
で表される円を$C_t$とする.$t$がどのような値でも$C_t$と接する直線の方程式を求めよ.
龍谷大学 私立 龍谷大学 2015年 第3問
円$x^2+(y-1)^2=1$とその内部を$x$軸のまわりに$1$回転してできる立体を考える.

(1)$t$を$-1 \leqq t \leqq 1$を満たす定数とする.この立体を$x$軸に垂直で$(t,\ 0)$を通る平面で切った断面の面積を$t$で表しなさい.
(2)この立体の体積を求めなさい.
甲南大学 私立 甲南大学 2015年 第2問
$k$を正の実数とする.直線$\displaystyle \ell:y=\frac{x}{\sqrt{3}}+k$は$x$軸と点$\mathrm{P}$で交わり,円$O:x^2+y^2=1$と$2$点$\mathrm{A}$,$\mathrm{B}$で交わる.ただし,$3$点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$は直線$\ell$上にこの順で並び,$\mathrm{AB}=1$である.このとき,以下の問いに答えよ.

(1)$k$の値を求めよ.また,点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{P}$を通り円$O$に接する直線のうち傾きが負であるものを$m$とする.直線$m$の方程式を求めよ.また,直線$m$と円$O$の接点$\mathrm{C}$の座標を求めよ.
(3)$\mathrm{C}$を$(2)$で求めた点とする.三角形$\mathrm{ABC}$の面積を求めよ.
甲南大学 私立 甲南大学 2015年 第2問
$k$を正の実数とする.直線$\displaystyle \ell:y=\frac{x}{\sqrt{3}}+k$は$x$軸と点$\mathrm{P}$で交わり,円$O:x^2+y^2=1$と$2$点$\mathrm{A}$,$\mathrm{B}$で交わる.ただし,$3$点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$は直線$\ell$上にこの順で並び,$\mathrm{AB}=1$である.このとき,以下の問いに答えよ.

(1)$k$の値を求めよ.また,点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{P}$を通り円$O$に接する直線のうち傾きが負であるものを$m$とする.直線$m$の方程式を求めよ.また,直線$m$と円$O$の接点$\mathrm{C}$の座標を求めよ.
(3)$\mathrm{C}$を$(2)$で求めた点とする.三角形$\mathrm{ABC}$の面積を求めよ.
東北医科薬科大学 私立 東北医科薬科大学 2015年 第2問
$x^2-12x+y^2-24y+160=0$で表される円を$C$とおく.このとき,次の問に答えなさい.

(1)円$C$の中心$\mathrm{P}$は$([ア],\ [イウ])$で半径は$[エ] \sqrt{[オ]}$である.
(2)原点$\mathrm{O}(0,\ 0)$と中心$\mathrm{P}$を通る直線$\ell$を考える.直線$\ell$と円$C$の交点を原点に近い方から$\mathrm{Q}$,$\mathrm{R}$とおくと点$\mathrm{Q}$の$x$座標は$[カ]$,点$\mathrm{R}$の$x$座標は$[キ]$である($[カ]<[キ]$).
(3)直線$\ell$に平行で$y$切片が$k$の直線を$\ell(k)$とおく.ただし$0<k$とする.直線$\ell(k)$と円$C$が異なる$2$交点$\mathrm{S}$,$\mathrm{T}$をもつような$k$の値の範囲は$0<k<[クケ]$である.この$2$交点の$x$座標を$\alpha,\ \beta$とおくと$\displaystyle \alpha+\beta=[コサ]-\frac{[シ]}{[ス]}k$である.
(4)このとき$\displaystyle \mathrm{ST}^2=[セソ]-\frac{[タ]}{[チ]}k^2$である.$\mathrm{ST}$の中点を$\mathrm{U}$とおくと$\displaystyle \mathrm{PU}^2=\frac{[ツ]}{[テ]}k^2$なので三角形$\mathrm{PST}$の面積は$k=[ト] \sqrt{[ナ]}$のとき最大値$[ニヌ]$をとる.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。