タグ「円」の検索結果

16ページ目:全908問中151問~160問を表示)
愛知教育大学 国立 愛知教育大学 2015年 第9問
$a,\ b$を実数とし,$b<a$とする.焦点が$(0,\ a)$,準線が$y=b$である放物線を$P$で表すことにする.すなわち,$P$は点$(0,\ a)$からの距離と直線$y=b$からの距離が等しい点の軌跡である.

(1)放物線$P$の方程式を求めよ.
(2)焦点$(0,\ a)$を中心とする半径$a-b$の円を$C$とする.このとき,円$C$と放物線$P$の交点を求めよ.
(3)円$C$と放物線$P$で囲まれた図形のうち,放物線$P$の上側にある部分の面積を求めよ.
奈良女子大学 国立 奈良女子大学 2015年 第5問
原点を中心とする半径$1$の円$C$と,点$\mathrm{A}(2,\ 0)$を中心とする半径$1$の円$C_1$がある.円$C$上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$をとり,$\mathrm{P}$を中心とする半径$1$の円を$C_2$とする.次の問いに答えよ.

(1)円$C_1$と円$C_2$が異なる$2$点で交わるとき,$\cos \theta$のとり得る値の範囲を求めよ.
(2)円$C_1$と円$C_2$が異なる$2$点で交わるとき,その$2$点と点$\mathrm{P}$を頂点とする三角形の面積を$S$とする.以下の$(ⅰ)$,$(ⅱ)$に答えよ.

(i) $S$を$\theta$を用いて表せ.
(ii) $S$の最大値を求めよ.
鹿児島大学 国立 鹿児島大学 2015年 第1問
次の各問いに答えよ.

(1)$\mathrm{SATTUN}$という$6$文字を並びかえて得られる順列のうち,最初が子音文字になるものの総数を求めよ.
(2)半径$r$の円$\mathrm{O}^\prime$が半径$2r$の円$\mathrm{O}$に点$\mathrm{P}$で内接し,さらに円$\mathrm{O}^\prime$は円$\mathrm{O}$の弦$\mathrm{AB}$に点$\mathrm{Q}$で接している.線分$\mathrm{PQ}$の延長が円$\mathrm{O}$と交わる点を$\mathrm{M}$とする.$\angle \mathrm{PQB}={60}^\circ$のとき,線分$\mathrm{QM}$の長さを求めよ.
(3)$1$次不定方程式
\[ 37x+32y=1 \]
の整数解を$1$組求めよ.
鹿児島大学 国立 鹿児島大学 2015年 第1問
次の各問いに答えよ.

(1)$\mathrm{SATTUN}$という$6$文字を並びかえて得られる順列のうち,最初が子音文字になるものの総数を求めよ.
(2)半径$r$の円$\mathrm{O}^\prime$が半径$2r$の円$\mathrm{O}$に点$\mathrm{P}$で内接し,さらに円$\mathrm{O}^\prime$は円$\mathrm{O}$の弦$\mathrm{AB}$に点$\mathrm{Q}$で接している.線分$\mathrm{PQ}$の延長が円$\mathrm{O}$と交わる点を$\mathrm{M}$とする.$\angle \mathrm{PQB}={60}^\circ$のとき,線分$\mathrm{QM}$の長さを求めよ.
(3)$1$次不定方程式
\[ 37x+32y=1 \]
の整数解を$1$組求めよ.
鹿児島大学 国立 鹿児島大学 2015年 第1問
次の各問いに答えよ.

(1)$\mathrm{SATTUN}$という$6$文字を並びかえて得られる順列のうち,最初が子音文字になるものの総数を求めよ.
(2)半径$r$の円$\mathrm{O}^\prime$が半径$2r$の円$\mathrm{O}$に点$\mathrm{P}$で内接し,さらに円$\mathrm{O}^\prime$は円$\mathrm{O}$の弦$\mathrm{AB}$に点$\mathrm{Q}$で接している.線分$\mathrm{PQ}$の延長が円$\mathrm{O}$と交わる点を$\mathrm{M}$とする.$\angle \mathrm{PQB}={60}^\circ$のとき,線分$\mathrm{QM}$の長さを求めよ.
(3)$1$次不定方程式
\[ 37x+32y=1 \]
の整数解を$1$組求めよ.
鹿児島大学 国立 鹿児島大学 2015年 第7問
次の各問いに答えよ.ただし,$i$は虚数単位とする.

(1)方程式$z^4=-1$を解け.
(2)$\alpha$を方程式$z^4=-1$の解の一つとする.複素数平面に点$\beta$があって$|z-\beta|=\sqrt{2} |z-\alpha|$を満たす点$z$全体が原点を中心とする円$C$を描くとき,複素数$\beta$を$\alpha$で表せ.
(3)点$z$が$(2)$の円$C$上を動くとき,点$i$と$z$を結ぶ線分の中点$w$はどのような図形を描くか.
奈良教育大学 国立 奈良教育大学 2015年 第4問
$1$つの円が定直線に接しながらすべることなく回転するとき,円周上の定点$\mathrm{P}$のえがく軌跡をサイクロイドという.
(図は省略)

上の図を参考に,以下の設問に答えよ.

(1)円$\mathrm{C}$を半径$1$の円,定直線を$x$軸とし,円$\mathrm{C}$が$x$軸に原点$\mathrm{O}$で接するとき,定点$\mathrm{P}$が$\mathrm{O}$の位置にあったとする.円$\mathrm{C}$が角$\theta$だけ回転したとき,円$\mathrm{C}$の中心の座標を求めよ.
(2)円$\mathrm{C}$が角$\theta$だけ回転したときの点$\mathrm{P}$の位置を$(x,\ y)$とするとき,$x,\ y$をそれぞれ$\theta$を使って表せ.
(3)$0 \leqq \theta \leqq 2\pi$において,$(2)$で与えられる点$\mathrm{P}$の軌跡(サイクロイド)と$x$軸とで囲まれた図形の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第1問
座標平面上で原点$\mathrm{O}$を中心,半径$1$の円を$S$とする.点$\mathrm{P}$が円$S$上を動くとき,$\mathrm{P}$における$S$の接線に点$\displaystyle \mathrm{A} \left( \frac{1}{2},\ 0 \right)$から下ろした垂線の交点$\mathrm{Q}$のなす軌跡を$C$とする.$x$軸の正の方向に対して$\mathrm{OP}$のなす角を$t$として,$\mathrm{P}$の座標を$(\cos t,\ \sin t)$で表す.このときの$\mathrm{Q}$の座標を$(f(t),\ g(t))$とする.

(1)$f(t),\ g(t)$を求めよ.
(2)$g(t)$の最大値を求めよ.
(3)$C$で囲まれた図形の$y \geqq 0$の部分の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第1問
座標平面上で原点$\mathrm{O}$を中心,半径$1$の円を$S$とする.点$\mathrm{P}$が円$S$上を動くとき,$\mathrm{P}$における$S$の接線に点$\displaystyle \mathrm{A} \left( \frac{1}{2},\ 0 \right)$から下ろした垂線の交点$\mathrm{Q}$のなす軌跡を$C$とする.$x$軸の正の方向に対して$\mathrm{OP}$のなす角を$t$として,$\mathrm{P}$の座標を$(\cos t,\ \sin t)$で表す.このときの$\mathrm{Q}$の座標を$(f(t),\ g(t))$とする.

(1)$f(t),\ g(t)$を求めよ.
(2)$g(t)$の最大値を求めよ.
(3)$C$で囲まれた図形の$y \geqq 0$の部分の面積を求めよ.
宮崎大学 国立 宮崎大学 2015年 第4問
$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{6}$を満たす$\theta$について,$r(\theta)=\sqrt{2 \cos 2\theta}$とするとき,座標平面上で円$x^2+y^2=\{r(\theta)\}^2$と直線$y=(\tan \theta)x$は$2$つの交点をもつ.そのうち,$x$座標が正であるものを$\mathrm{P}$とし,$\mathrm{P}$の$x$座標を$f(\theta)$,$y$座標を$g(\theta)$とする.$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{6}$の範囲で動かしたときの点$\mathrm{P}$の軌跡を$C$とする.このとき,次の各問に答えよ.

(1)$f(\theta),\ g(\theta)$を求めよ.
(2)$g(\theta)$の最大値を求めよ.
(3)曲線$C$と$x$軸,直線$\displaystyle x=f \left( \frac{\pi}{6} \right)$で囲まれた部分の面積を求めよ.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。