タグ「円」の検索結果

14ページ目:全908問中131問~140問を表示)
大分大学 国立 大分大学 2015年 第1問
$a$を実数とする.円$x^2+y^2-4x-8y+15=0$と直線$y=ax+1$が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わっている.

(1)$a$の値の範囲を求めなさい.
(2)弦$\mathrm{AB}$の長さが最大になるときの$a$の値を求めなさい.
(3)弦$\mathrm{AB}$の長さが$2$になるときの$a$の値を求めなさい.
小樽商科大学 国立 小樽商科大学 2015年 第3問
次の$[ ]$の中を適当に補え.

(1)整数$m \geqq 2015$に対し,
\[ \frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+\cdots +\frac{1}{{(2m)}^2-1}=[ア] \]
(2)下図のような道に沿って$\mathrm{A}$地点から$\mathrm{B}$地点まで進むとき,最短経路は何通りあるかを求めると$[イ]$通り.
(図は省略)
(3)中心が$\mathrm{A}(1,\ 0)$にある半径$r (0<r<1)$の円に原点$\mathrm{O}$から$2$本の接線を引く.それぞれの接点と中心$\mathrm{A}$と原点$\mathrm{O}$を頂点とする四角形の面積の最大値$M$とそのときの$r$の値を求めると$(M,\ r)=[ウ]$.
弘前大学 国立 弘前大学 2015年 第2問
次の問いに答えよ.

(1)$r>0$を定数とする.点$(x,\ y)$が楕円$4x^2+y^2=r^2$上を動くとき,$6x+4y$のとり得る値の範囲を求めよ.
(2)$x,\ y$がすべての実数値をとるとき,$\displaystyle \frac{6x+4y+5}{4x^2+y^2+15}$の最大値と最小値を求めよ.
高知大学 国立 高知大学 2015年 第1問
方程式$x^2+y^2+2kx-4ky+10k-20=0$の表す図形$C$を考える.ただし,$k$は実数とする.次の問いに答えよ.

(1)図形$C$は円であることを示せ.
(2)図形$C$は$k$がどのような値であっても定点を通る.その定点の座標を求めよ.
(3)図形$C$で囲まれる部分の面積の最小値を求めよ.
(4)図形$C$と直線$y=x-2$の共有点の個数を求めよ.
山梨大学 国立 山梨大学 2015年 第1問
次の問いに答えよ.

(1)$\log_{10}2=0.3010$とする.$2^{2015}$の桁数を求めよ.
(2)座標空間において,点$(a,\ 0,\ -1)$を中心とする半径$3$の球面が,$yz$平面と交わってできる円の半径が$2$のとき,$a$の値を求めよ.
(3)$y=-3x^3+9x-1$の極小値を求めよ.
(4)$\displaystyle y=2 \sin \left( \theta+\frac{\pi}{3} \right)$のグラフをかけ.ただし,$0 \leqq \theta \leqq 2\pi$とする.
滋賀大学 国立 滋賀大学 2015年 第2問
$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-2,\ 0)$,$\mathrm{B}(1,\ 0)$と円$C:x^2+y^2=1$があり,$\mathrm{A}$を通る直線が$C$と$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっている.ただし,$\mathrm{P}$,$\mathrm{Q}$の$y$座標はともに正であり,$3$点は$\mathrm{A}$,$\mathrm{P}$,$\mathrm{Q}$の順に並んでいるとする.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{BPQ}$の面積を$S_1$とし,$\triangle \mathrm{OPQ}$の面積を$S_2$とするとき,$S_1:S_2$を求めよ.
(2)$\angle \mathrm{POQ}=\theta$とするとき,$S_1$を$\theta$を用いて表せ.
(3)$\angle \mathrm{BOQ}=\angle \mathrm{POQ}$のとき,点$\mathrm{Q}$の座標と$S_1$を求めよ.
愛媛大学 国立 愛媛大学 2015年 第4問
$n$を自然数とし,曲線$\displaystyle y=n \sin \frac{x}{n}$と円$x^2+y^2=1$の第$1$象限における交点の座標を$(p_n,\ q_n)$とする.

(1)$x>0$のとき,不等式$\displaystyle n \sin \frac{x}{n}<x$が成り立つことを示せ.
(2)不等式$\displaystyle p_n>\frac{1}{\sqrt{2}}$が成り立つことを示せ.
(3)$0 \leqq x \leqq 1$のとき,不等式
\[ (*) \quad \left( n \sin \frac{1}{n} \right) x \leqq n \sin \frac{x}{n} \]
が成り立つことを利用して,次の$(ⅰ)$,$(ⅱ)$に答えよ.

(i) 不等式$\displaystyle p_n \leqq \frac{1}{\sqrt{1+n^2 \sin^2 \displaystyle\frac{1}{n}}}$が成り立つことを示せ.
(ii) $x$軸,直線$x=p_n$,および曲線$\displaystyle y=n \sin \frac{x}{n} (0 \leqq x \leqq p_n)$で囲まれた領域の面積を$S_n$とするとき,$S_n$を$p_n$を用いて表せ.また,$\displaystyle \lim_{n \to \infty} S_n$を求めよ.

(4)$0 \leqq x \leqq 1$のとき,$(3)$の不等式$(*)$が成り立つことを示せ.
信州大学 国立 信州大学 2015年 第1問
原点を中心とする半径$1$の円$\mathrm{O}$の上に,$3$点$\mathrm{A}(0,\ 1)$,$\displaystyle \mathrm{B} \left( -\frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$,$\displaystyle \mathrm{C} \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$をとる.線分$\mathrm{AC}$の中点を$\mathrm{M}$,線分$\mathrm{BC}$の中点を$\mathrm{N}$とする.$2$点$\mathrm{M}$,$\mathrm{N}$を通る直線が円$\mathrm{O}$と交わる$2$点のうち,$\mathrm{N}$に近い方の交点を$\mathrm{Q}$とする.このとき,線分$\mathrm{NQ}$の長さを求めよ.
信州大学 国立 信州大学 2015年 第2問
次の$3$つの条件を満たす自然数の組$(x,\ y,\ z)$を考える.

$(ⅰ)$ \ $x$は奇数である.
$(ⅱ)$ \ $x^2+y^2=z^2$
$(ⅲ)$ \ $x,\ y,\ z$の最大公約数は$1$である.

例えば$(x,\ y,\ z)=(3,\ 4,\ 5),\ (5,\ 12,\ 13)$などがその例である.

(1)$y$は偶数であることを示せ.
(2)$x=a^2-b^2,\ y=2ab$となる自然数$a,\ b$が存在することを示せ.
(3)条件を満たす$(x,\ y,\ z)$で,$(3,\ 4,\ 5)$と$(5,\ 12,\ 13)$以外のものを$2$組求めよ.
信州大学 国立 信州大学 2015年 第1問
次の$3$つの条件を満たす自然数の組$(x,\ y,\ z)$を考える.

$(ⅰ)$ \ $x$は奇数である.
$(ⅱ)$ \ $x^2+y^2=z^2$
$(ⅲ)$ \ $x,\ y,\ z$の最大公約数は$1$である.

例えば$(x,\ y,\ z)=(3,\ 4,\ 5),\ (5,\ 12,\ 13)$などがその例である.

(1)$y$は偶数であることを示せ.
(2)$x=a^2-b^2,\ y=2ab$となる自然数$a,\ b$が存在することを示せ.
(3)条件を満たす$(x,\ y,\ z)$で,$(3,\ 4,\ 5)$と$(5,\ 12,\ 13)$以外のものを$2$組求めよ.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。