タグ「円錐」の検索結果

2ページ目:全29問中11問~20問を表示)
大阪薬科大学 私立 大阪薬科大学 2014年 第1問
次の問いに答えなさい.

(1)底面の半径が$2$で高さが$h$の円錐の体積と,半径$3$の球の体積が等しいとき,$h=[$\mathrm{A]$}$である.
(2)$2$次方程式$x^2+5x+5=0$の$2$つの解を$\alpha,\ \beta$とする.このとき,$\displaystyle \frac{1}{\alpha}+\frac{1}{\beta}$の値は$[$\mathrm{B]$}$である.
(3)成功する確率が$\displaystyle \frac{1}{2}$の実験を$5$回繰り返すとき,$5$回目の実験がちょうど$3$度目の成功となる確率は$[$\mathrm{C]$}$である.ただし,どの実験の結果も他の実験の結果に影響を及ぼさないとする.
(4)$1$辺の長さが$6$の正四面体$\mathrm{ABCD}$において,辺$\mathrm{BC}$を$1:5$に内分する点を$\mathrm{P}$とするとき,$\cos \angle \mathrm{APD}=[$\mathrm{D]$}$である.
(5)$\theta$が$0 \leqq \theta \leqq 2\pi$の範囲を動くとき,関数
\[ f(\theta)=(1+2 \cos \theta)(3-\cos 2\theta) \]
の最大値と最小値を求めなさい.
北里大学 私立 北里大学 2014年 第1問
次の各文の$[ ]$にあてはまる答を求めよ.

(1)$\displaystyle \frac{7}{3+\sqrt{2}}$の小数部分を$a$とするとき,$a$の値は$[ア]$,$\displaystyle a^2+\frac{1}{a^2}$の値は$[イ]$である.
(2)$1$個のさいころを$4$回続けて投げるとき,$4$回とも$1$の目が出る確率は$[ウ]$である.また,$1$の目がちょうど$2$回出る確率は$[エ]$である.
(3)$k$を正の定数とし,$2$つの放物線$y=-x^2+3x-2k$,$y=x^2+2kx+4k$をそれぞれ$C_1$,$C_2$とする.$C_1$の頂点の$y$座標が$1$であるとき,$k$の値は$[オ]$である.$C_2$が$x$軸と接するとき,$k$の値は$[カ]$である.また,$x$軸が$C_1$と$C_2$のどちらとも共有点をもたないような定数$k$の値の範囲は$[キ]$である.
(4)半径が$3$である球を$A$,底面の円の半径が$6$である円錐を$B$とする.このとき,球$A$の体積は$[ク]$である.また,球$A$が円錐$B$に図のように内接するとき,円錐$B$の表面積は$[ケ]$である.
(図は省略)
上智大学 私立 上智大学 2014年 第2問
座標空間の原点$\mathrm{O}$を通りベクトル$(1,\ \sqrt{3},\ 2 \sqrt{3})$に平行な直線を$\ell$とし,点$\mathrm{A}$の座標を$(\sqrt{3}+3,\ 3 \sqrt{3}+3,\ 6-2 \sqrt{3})$とする.このとき,$\mathrm{O}$を頂点とする円錐$C$は,底面の中心$\mathrm{H}$が$\ell$上にあり,底面の円周が$\mathrm{A}$を通るとする.

(1)$\displaystyle \angle \mathrm{AOH}=\frac{[コ]}{[サ]}\pi$である.ただし,$0 \leqq \angle \mathrm{AOH}<\pi$とする.
(2)$\mathrm{H}$の座標は
\[ \left( \sqrt{[シ]},\ [ス],\ [セ] \right) \]
である.
(3)点$(\sqrt{3},\ y,\ z)$が$C$の底面上(境界を含む)にあるとき,常に
\[ y+[ソ]z+[タ]=0 \]
が成り立つ.
(4)点$(\sqrt{3},\ y,\ z)$が$C$の側面上(境界を含む)にあるとき,常に
\[ [チ]y^2+[ツ]yz+[テ]z^2+[ト]y+[ナ]z+21=0 \]
が成り立つ.また,このときの$z$の最大値は
\[ [ニ]+\frac{[ヌ]}{[ネ]} \sqrt{[ノ]} \]
である.
東京都市大学 私立 東京都市大学 2014年 第2問
次の問に答えよ.

(1)半径$1$の円の一部を半径に沿って切り取って扇形を作り,この扇形の切り口を合わせて円錐を作る.円錐の頂点から底面に下した垂線の長さを$h$とするとき,円錐の容積を最大にする$h$の値を求めよ.
(2)定積分$\displaystyle \int_0^1 \frac{1}{(1+x^2)^\frac{3}{2}} \, dx$の値を求めよ.
(3)定数$a$に対し,$\displaystyle b=-a^2+\frac{1}{2}a+\frac{1}{2}$とおく.自然数$n$に対し
\[ S_n=1+b+b^2+\cdots +b^{n-1} \]
と定める.数列$\{S_n\}$が収束するような$a$の範囲を求め,そのときの極限値$\displaystyle \lim_{n \to \infty} S_n$を$a$の式で表せ.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)すべての実数$x$について,$2$次不等式$2x^2-6ax+3a>-4$が成り立つとき,$a$の値の範囲は$[ア]$である.また,$a>0$の範囲で,$2$次関数$y=2x^2-6ax+3a$の最小値が$-4$となるとき,その最小値をとる$x$の値は$[イ]$である.
(2)$\displaystyle \tan \theta+\frac{1}{\tan \theta}=4 (0<\theta<\frac{\pi}{2})$のとき,$\sin \theta \cos \theta=[ウ]$であり,$\sin^3 \theta+\cos^3 \theta=[エ]$である.
(3)実数$k$について,方程式$x^2+y^2-6kx+4(k+1)y+14k^2+7k+2=0$が半径$\sqrt{2}$以上の円を表すとき,$k$の値の範囲は$[オ]$である.また,その円が$y$軸に接するときの円の半径は$[カ]$である.
(4)$12^5$は$[キ]$桁の数であり,$12^n$が$12$桁の数になるときの整数$n$は$[ク]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(5)展開図が円と半径$l$の扇形からなる直円錐を考える.$l$が一定のとき,この円錐の体積を最大にするような円錐の高さを,$l$で表すと$[ケ]$であり,扇形の中心角は$[コ]$度である.
安田女子大学 私立 安田女子大学 2013年 第3問
次の図のように,底面の半径が$3 \, \mathrm{cm}$,高さが$12 \, \mathrm{cm}$の円錐と,底面を共有し,円錐に内接する円柱がある.このとき,次の問いに答えよ.なお,円周率は$\pi$とする.
(図は省略)

(1)円柱の底面の半径を$x \, \mathrm{cm}$とするとき,円柱の高さ$h \, \mathrm{cm}$を$x$を用いて表せ.
(2)円柱の表面積の最大値を求めよ.
釧路公立大学 公立 釧路公立大学 2013年 第1問
以下の各問に答えよ.

(1)ある大学の売店では年会費を$5,000$円払えば会員となり,品物を$5 \, \%$引きで買うことができる.$1$個$380$円の品物を買うとき,何個以上買うと,会員になった方が,会員にならないよりも合計金額が安くなるか答えよ.
(2)$2$次関数$y=3x^2+6nx+12n$がある.

(i) この$2$次関数の最小値$m$を,$n$の関数で表せ.
(ii) $n$の値を変化させて,$(1)$における最小値$m$が最も大きくなるときの$n$の値と,そのときの$m$の値を求めよ.

(3)底面の半径が$6$,高さが$8$の円錐に内接する球$\mathrm{Q}$の表面積と体積を求めよ.ただし,円周率は$\pi$とする.
長崎大学 国立 長崎大学 2012年 第4問
$a$を正の定数とする.次の問いに答えよ.

(1)半径$a$の球面に内接する円柱の高さを$g$,底面の半径を$r$とする.$r$を$a$と$g$を用いて表せ.
(2)(1)の円柱で,体積が最大になるときの高さ,およびそのときの底面の半径と体積をそれぞれ$a$を用いて表せ.
(3)半径$a$の球面に内接する円錐がある.ただし,円錐の頂点と底面の中心を結ぶ線分は球の中心を通るものとする.円錐の高さを$h$,底面の半径を$s$とする.$s$を$a$と$h$を用いて表せ.
(4)(3)の円錐で,体積が最大になるときの高さ,およびそのときの底面の半径と体積をそれぞれ$a$を用いて表せ.
立教大学 私立 立教大学 2012年 第2問
関数$f(x)=x^3+x^2-16x+3$が定める座標平面上の曲線を$C$とする.この曲線が$y$軸と交わる点を$\mathrm{P}$とし,$f(x)$は$x=a$において極小値をとるとする.$x=a$に対応する曲線上の点を$\mathrm{Q}(a,\ f(a))$とする.このとき,次の問(1)~(3)に答えよ.

(1)点$\mathrm{Q}$の座標を求めよ.
(2)点$\mathrm{R}$を$\mathrm{R}(0,\ f(a))$で定める.$\triangle \mathrm{PQR}$を$y$軸を中心にして回転させて得られる円錐$\mathrm{M}$とそれに内接する円柱$\mathrm{N}$を考える.円柱$\mathrm{N}$の底面は,円柱$\mathrm{M}$の底面に含まれており,半径が$r$であるとき,この円柱$\mathrm{N}$の体積$V$を$r$の式で表せ.
(3)円柱$\mathrm{N}$の体積$V$が最大となるような$r$とそのときの体積を求めよ.
日本女子大学 私立 日本女子大学 2012年 第3問
点$\mathrm{H}$を中心,線分$\mathrm{BC}$を直径とする円を底面とし,点$\mathrm{O}$を頂点とする円錐を考える.ただし,線分$\mathrm{OH}$は底面に対して垂直であるとする.右側の図は円錐の表面の展開図の底面以外の部分である.左側の図のように底面に平行な平面で円錐を切断する.この切断面の円と母線$\mathrm{OB}$との交点を$\mathrm{A}$,母線$\mathrm{OC}$との交点を$\mathrm{D}$,直線$\mathrm{OH}$との交点を$\mathrm{G}$とする.さらに,線分$\mathrm{AB}$上に点$\mathrm{E}$をとる.左側の図で線分の長さが$\mathrm{AD}=2$,$\mathrm{BC}=8$,$\mathrm{GH}=6 \sqrt{2}$,$\mathrm{AE}=3$のとき,以下の問いに答えよ.

(1)線分$\mathrm{AB}$の長さを求めよ.
(2)線分$\mathrm{OA}$の長さと,この展開図の扇形の中心角$\theta$の大きさを求めよ.
(3)円錐の表面上で,底面を横切らずに,点$\mathrm{B}$から母線$\mathrm{OC}$上の点を経て点$\mathrm{E}$に至る最短距離を,この展開図を利用して求めよ.
(4)母線$\mathrm{OC}$と$(3)$の最短距離を与える線の交点を$\mathrm{P}$とする.線分$\mathrm{CP}$の長さを求めよ.
(図は省略)
スポンサーリンク

「円錐」とは・・・

 まだこのタグの説明は執筆されていません。