タグ「円柱」の検索結果

1ページ目:全19問中1問~10問を表示)
明治大学 私立 明治大学 2016年 第3問
次の設問の$[ ]$に適当な数を入れなさい.

半径$3$の球に内接する円柱の体積の最大値は$[ ] \pi$である.ただし,$\pi$は円周率である.
金沢工業大学 私立 金沢工業大学 2015年 第4問
半径が$1$の球に内接する直円柱を考え,この直円柱の底面の半径を$x$とし,体積を$V$とする.

(1)$V=[ケ] \pi x^2 \sqrt{[コ]-x^2}$である.

(2)$\displaystyle \frac{dV}{dx}=\frac{[サ] \pi x(2-[シ]x^2)}{\sqrt{[ス]-x^2}}$である.

(3)$V$が最大になるのは$\displaystyle x=\frac{\sqrt{[セ]}}{[ソ]}$のときであり,その最大値は$\displaystyle \frac{[タ] \sqrt{[チ]}}{[ツ]} \pi$である.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2015年 第2問
半径が$1$の円を底面とし,高さが$4$の直円錐に内接する直円柱を考える.この直円柱の表面積が最大となるときの底面の半径$x$の値と,その際の直円柱の体積$V$の値を求めよ.ただし円周率は$\pi$とする.
(図は省略)
中京大学 私立 中京大学 2015年 第7問
底面が直径$D \, \mathrm{mm}$の円であり,高さが$22 \, \mathrm{mm}$の直円柱の容器がある.ただし,底面および側面の厚さは$0 \, \mathrm{mm}$としてよい.この容器に水を満杯に入れ,その上に半径$R=18 \, \mathrm{mm} (2R>D)$の球体を載せたところ,容器の水が溢れだした.その後,球体を取り除くと容器の水位が$5 \, \mathrm{mm}$低くなった.このとき,溢れだした水の体積は$D$を用いて$\displaystyle \frac{[ア]}{[イ]}D^2 \pi \, \mathrm{mm}^3$と表すことができ,容器の底面の直径は$D=[ウエ] \sqrt{[オ]} \, \mathrm{mm}$である.
北九州市立大学 公立 北九州市立大学 2015年 第3問
半径$1$の円を底面とする高さ$2$の円柱がある.下図のように,ひとつの底面を$xy$平面にとり,その中心を原点$\mathrm{O}$にとる.点$\displaystyle \mathrm{A} \left( -\frac{1}{\sqrt{2}},\ 0,\ 0 \right)$および点$\displaystyle \mathrm{B} \left( 0,\ 0,\ \frac{1}{\sqrt{2}} \right)$を通り,$xy$平面と${45}^\circ$の角をなす平面で,円柱を$2$つの立体に分ける.以下の問いに答えよ.

(1)平面$x=a$(ただし,$\displaystyle -\frac{1}{\sqrt{2}} \leqq a \leqq 1$)で小さい方の立体を切ったときの切り口(長方形$\mathrm{PQRS}$)の面積$S(a)$を求めよ.
(2)小さい方の立体の体積$V$を求めよ.
(図は省略)
山口大学 国立 山口大学 2014年 第2問
図のように,円柱$E$と直円錐$F$が半径$1$の球に内接しており,さらに$E$と$F$の底面は一致している.このとき,次の問いに答えなさい.
(図は省略)

(1)円柱$E$の高さを$h$とするとき,円柱$E$の底面の半径と直円錐$F$の高さを,それぞれ$h$を用いて表しなさい.
(2)半径$1$の球に内接する円柱の体積の最大値を求めなさい.
(3)円柱$E$の体積と直円錐$F$の体積が等しいとする.円柱$E$から直円錐$F$が重なっている部分をくり抜いたとき,くり抜かれて残った立体の体積を求めなさい.
津田塾大学 私立 津田塾大学 2014年 第3問
下図は,半径$1$の円を底面とする高さ$1$の円柱を,底面に垂直な平面で切り取ったものである.ここで,線分$\mathrm{OA}$は底面に垂直である.また,点$\mathrm{B}$,$\mathrm{E}$,$\mathrm{F}$は点$\mathrm{A}$を通り線分$\mathrm{OA}$に垂直な平面上にあり,線分$\mathrm{AF}$と$\mathrm{BE}$は垂直である.さらに,$\mathrm{F}$は線分$\mathrm{BE}$の中点であり,$\displaystyle \mathrm{AF}=\frac{3}{2}$である.線分$\mathrm{OA}$上に点$\mathrm{X}$をとり,$\mathrm{OX}=t$とする.$\mathrm{X}$を通り,線分$\mathrm{OA}$に垂直な平面と線分$\mathrm{EC}$との交点を$\mathrm{G}$とする.
(図は省略)

(1)$\mathrm{BF}$を求めよ.
(2)$\mathrm{XG}$を$t$を用いて表せ.
(3)$\mathrm{X}$が$\mathrm{O}$から$\mathrm{A}$まで動くとき,線分$\mathrm{XG}$を線分$\mathrm{OA}$の周りに回転してできる図形が通過してできる立体の体積$V$を求めよ.
岡山県立大学 公立 岡山県立大学 2014年 第3問
次の問いに答えよ.

(1)体積が$V$,表面積が$S$,底面の半径が$r$の円柱を考える.

(i) $S$を$V$と$r$で表せ.
(ii) $V$の値を一定にするとき,$S$の最小値とそれを与える$r$の値を求めよ.

(2)$x>0$のとき$\displaystyle \log (1+x)>x-\frac{x^2}{2}$であることを示せ.
東北大学 国立 東北大学 2013年 第6問
半径1の円を底面とする高さ$\displaystyle \frac{1}{\sqrt{2}}$の直円柱がある.底面の円の中心を$\mathrm{O}$とし,直径を1つ取り$\mathrm{AB}$とおく.$\mathrm{AB}$を含み底面と$45^\circ$の角度をなす平面でこの直円柱を2つの部分に分けるとき,体積の小さい方の部分を$V$とする.

(1)直径$\mathrm{AB}$と直交し,$\mathrm{O}$との距離が$t \ (0 \leqq t \leqq 1)$であるような平面で$V$を切ったときの断面積$S(t)$を求めよ.
(2)$V$の体積を求めよ.
佐賀大学 国立 佐賀大学 2013年 第3問
$x$軸,$y$軸,$z$軸を座標軸,原点を$\mathrm{O}$とする座標空間において,$z$軸 \\
を中心軸とする半径$1$の円柱を考える.次に,$x$軸を含み$xy$平面と \\
のなす角が$\displaystyle \frac{\pi}{4}$となる平面を$\alpha$とし,平面$\alpha$による円柱の切り口の \\
曲線を$C$とする.また,点$\mathrm{A}(1,\ 0,\ 0)$とする.さらに,曲線$C$上 \\
の点$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PQ}$とし,$\angle \mathrm{AOQ}=\theta$ \ \\
$(0 \leqq \theta<2\pi)$とする.このとき,次の問に答えよ.
\img{711_2927_2013_1}{48}

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{A}$を通り$z$軸に平行な直線を$\ell$とする.$\ell$によって円柱の側面を切り開いた展開図の上に,曲線$C$の概形をかけ.
(3)図のように,平面$\alpha$と$yz$平面の交線を$Y$軸とする.$xY$平面における曲線$C$の方程式を求め,その概形をかけ.
(図は省略)
スポンサーリンク

「円柱」とは・・・

 まだこのタグの説明は執筆されていません。