タグ「円弧」の検索結果

1ページ目:全6問中1問~10問を表示)
広島大学 国立 広島大学 2016年 第1問
$a$を正の定数とし,座標平面上において,
\[ \text{円}C_1:x^2+y^2=1,\quad \text{放物線}C_2:y=ax^2+1 \]
を考える.$C_1$上の点$\displaystyle \mathrm{P} \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$における$C_1$の接線$\ell$は点$\mathrm{Q}(s,\ t)$で$C_2$に接している.次の問いに答えよ.

(1)$s,\ t$および$a$を求めよ.
(2)$C_2,\ \ell$および$y$軸で囲まれた部分の面積を求めよ.
(3)円$C_1$上の点が点$\mathrm{P}$から点$\mathrm{R}(0,\ 1)$まで反時計回りに動いてできる円弧を$C_3$とする.$C_2$,$\ell$および$C_3$で囲まれた部分の面積を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
球面$S:x^2-8x+y^2-4y+z^2+6z+20=0$は点$\mathrm{A}([$24$],\ [$25$],\ [$26$])$で$xy$平面と接し,球面$S$と$zx$平面との交わりは中心$\mathrm{B}([$27$],\ [$28$],\ [$29$][$30$])$,半径$\sqrt{[$31$]}$の円である.

球面$S$の中心を$\mathrm{C}$,線分$\mathrm{AB}$を$\sqrt{3}:2$に外分する点を$\mathrm{P}$とすると,$\mathrm{P}$の座標は
\[ \left( [$32$],\ [$33$]+[$34$] \sqrt{[$35$]},\ [$36$]+[$37$] \sqrt{[$38$]} \right) \]
であり,$\displaystyle \angle \mathrm{ACP}=\frac{[$39$]}{[$40$]} \pi$(ただし$0 \leqq \angle \mathrm{ACP} \leqq \pi$)である.また,三角形$\mathrm{BPC}$の辺および内部が球面$S$と交わってできる図形は,長さ$\displaystyle \frac{[$41$]}{[$42$]} \pi$の円弧である.
豊橋技術科学大学 国立 豊橋技術科学大学 2015年 第2問
図$1$が示すように,平面上に互いに異なる$5$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$がある.ただし,$\mathrm{O}$は原点であり,他の$4$点の位置ベクトルを$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$,$\overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とする.媒介変数$t (0 \leqq t \leqq 1)$を用いて,線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$を$t:1-t$に内分する点をそれぞれ$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$とする.同様に,線分$\mathrm{EF}$,$\mathrm{FG}$を$t:1-t$に内分する点をそれぞれ$\mathrm{H}$,$\mathrm{I}$とする.さらに,線分$\mathrm{HI}$を$t:1-t$に内分する点を$\mathrm{J}$とし,$t$が$0$から$1$まで変化するときの点$\mathrm{J}$の軌跡を曲線$K$とする(図$1$参照).以下の問いに答えよ.
(図は省略)

(1)$\overrightarrow{a},\ \overrightarrow{b}$および$t$を用いて位置ベクトル$\overrightarrow{\mathrm{OE}}$を表せ.
(2)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \overrightarrow{d}$および$t$を用いて位置ベクトル$\overrightarrow{\mathrm{OJ}}$を表せ.
(3)特殊な条件として,一辺が$r$の正方形上に図$2$に示すように点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を配置する.さらに,中心が$\mathrm{O}$で端点を$\mathrm{A}$,$\mathrm{D}$とする円弧を$L$とする.線分$\mathrm{AB}$と線分$\mathrm{CD}$の長さはともに半径$r$の$s$倍($0 \leqq s \leqq 1$)である.このとき,$\overrightarrow{a}$,$\overrightarrow{d}$および$s$を用いてベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}$,$\overrightarrow{c}$を表せ.
(4)$(3)$において,$\displaystyle t=\frac{1}{2}$のときの点$\mathrm{J}$に対応する点を特に点$\mathrm{M}$とするとき,点$\mathrm{M}$が円弧$L$上にあるための条件を$s$の値で示せ.
東北医科薬科大学 私立 東北医科薬科大学 2013年 第2問
$2$直線$x \cos \theta+y \sin \theta=6$,$x \sin \theta-y \cos \theta=8$の交点を$\mathrm{P}(\theta)$とおく.このとき,次の問に答えなさい.

(1)$\displaystyle \theta=\frac{\pi}{4}$のとき点$\displaystyle \mathrm{P} \left( \frac{\pi}{4} \right)$を$\mathrm{A}$とおくと$\mathrm{A}$の座標は$([ア] \sqrt{[イ]},\ [ウ] \sqrt{[エ]})$である.
(2)点$\mathrm{P}(\theta)$の座標$(x,\ y)$を$\theta$で表すと$x=[オ] \cos \theta+[カ] \sin \theta$,$y=[キ] \sin \theta-[ク] \cos \theta$である.
(3)$\theta$が$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \frac{3\pi}{4}$を動くとき,点$\mathrm{P}(\theta)$の軌跡は中心$([ケ],\ [コ])$,半径$[サシ]$の円の一部(円弧)を動き,その円弧の長さは$[ス] \pi$である.
(4)点$\displaystyle \mathrm{P} \left( \frac{3\pi}{4} \right)$を$\mathrm{B}$,点$\mathrm{P}(\theta)$を$\mathrm{P}$とおく.このときベクトル$\overrightarrow{\mathrm{PA}}$とベクトル$\overrightarrow{\mathrm{PB}}$の内積は
\[ \overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}=[セソタ]([チ]-\sqrt{[ツ]} \sin \theta) \]
である.また,$\theta$が$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \frac{3\pi}{4}$を動くとき,この内積が最小となる点$\mathrm{P}$の座標は$([テ],\ [ト])$である.
広島工業大学 私立 広島工業大学 2012年 第7問
$\triangle \mathrm{ABC}$の外接円の点$\mathrm{C}$における接線を$\ell$とする.$\ell$上に$\mathrm{C}$でない点$\mathrm{T}$を,直線$\mathrm{AC}$に関して$\mathrm{B}$と反対の側にとる.$\angle \mathrm{ACT}=60^\circ$,$\mathrm{AB}=2$,$\mathrm{BC}=3$とする.
(図は省略)

(1)辺$\mathrm{AC}$の長さと外接円の半径を求めよ.
(2)円弧$\mathrm{AC}$上に$\mathrm{CD}=1$となる点$\mathrm{D}$をとる.このとき,線分$\mathrm{AD}$の長さを求めよ.
(3)四角形$\mathrm{ABCD}$の面積を求めよ.
県立広島大学 公立 県立広島大学 2010年 第4問
放物線$\displaystyle y=\frac{1}{2}x^2$について,次の問いに答えよ.

(1)点P$\displaystyle \left(1,\ \frac{1}{2} \right)$における接線$\ell_1$の方程式を求めよ.
(2)点Pを通り直線$\ell_1$に直交する直線を$\ell_2$とする.直線$\ell_2$と$x$軸との交点Aの座標を求めよ.
(3)点Aを中心とし,直線$\ell_1$に接する円の方程式を求めよ.
(4)(3)の円と$x$軸との交点のうち原点に近い方の点Bの座標を求めよ.
(5)放物線,円弧BPおよび$x$軸で囲まれた図形の面積を求めよ.
スポンサーリンク

「円弧」とは・・・

 まだこのタグの説明は執筆されていません。