タグ「内角」の検索結果

2ページ目:全22問中11問~20問を表示)
弘前大学 国立 弘前大学 2015年 第1問
$3$辺の長さが$2,\ 3,\ 4$の三角形について次の問いに答えよ.

(1)内角が最大の頂点を$\mathrm{A}$,最小の頂点を$\mathrm{B}$とするとき,$\cos \angle \mathrm{A}$,$\cos \angle \mathrm{B}$を求めよ.
(2)残りの頂点を$\mathrm{C}$とする.また$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$はそれぞれ辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$上の点で,$\mathrm{AP}=\mathrm{BQ}=\mathrm{CR}$をみたすとする.このとき,$\mathrm{AQ}^2+\mathrm{BR}^2+\mathrm{CP}^2$の最大値と最小値を求めよ.
安田女子大学 私立 安田女子大学 2014年 第1問
次の問いに答えよ.

(1)$(xz+y)^2-(x+yz)^2$を因数分解せよ.
(2)$\triangle \mathrm{ABC}$において,$\angle \mathrm{C}={60}^\circ$,$\displaystyle \sin B=\frac{1}{3}$,$\mathrm{AB}=6$のとき,$\mathrm{AC}$を求めよ.
(3)正十五角形の内角の和を求めよ.
(4)不等式$|x^2-7x|<x-4$を解け.
安田女子大学 私立 安田女子大学 2014年 第1問
次の問いに答えよ.

(1)$(xz+y)^2-(x+yz)^2$を因数分解せよ.
(2)$\triangle \mathrm{ABC}$において,$\angle \mathrm{C}={60}^\circ$,$\displaystyle \sin B=\frac{1}{3}$,$\mathrm{AB}=6$のとき,$\mathrm{AC}$を求めよ.
(3)正十五角形の内角の和を求めよ.
(4)不等式$\sin^4 \theta-\sin^2 \theta \geqq 0$を解け.ただし$0^\circ \leqq \theta<{180}^\circ$とする.
(5)$\sqrt{28-3 \sqrt{12}}$の整数部分を求めよ.
宮崎大学 国立 宮崎大学 2013年 第5問
右図のような四角形$\mathrm{ABCD}$について,すべての内角の大きさは$180^\circ$ \\
未満とする.$\triangle \mathrm{BCD}$の重心を$\mathrm{P}$,$\triangle \mathrm{CDA}$の重心を$\mathrm{Q}$,$\triangle \mathrm{DAB}$の重 \\
心を$\mathrm{R}$,$\triangle \mathrm{ABC}$の重心を$\mathrm{S}$とする.ただし,点$\mathrm{P}$と点$\mathrm{R}$は直線$\mathrm{AC}$ \\
上になく,点$\mathrm{Q}$と点$\mathrm{S}$は直線$\mathrm{BD}$上にないものとする.このとき, \\
次の各問に答えよ.
\img{735_3039_2013_1}{37}


(1)$\mathrm{AC} \para \mathrm{RP}$を示せ.
(2)$\mathrm{AB} \para \mathrm{QP}$を示せ.
(3)四角形$\mathrm{ABCD}$が円に内接するとき,$4$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$は同一円周上にあることを示せ.
安田女子大学 私立 安田女子大学 2013年 第1問
次の問いに答えよ.

(1)$(-2x^2y)^2(-xy^2)^3(-3xy)^2$を計算せよ.
(2)$2x-|x+1|=3$を解け.
(3)正七角形の内角の和を求めよ.
(4)方程式$xy-3x-y+1=0$を満たす整数$(x,\ y)$の組をすべて求めよ.
鳥取環境大学 公立 鳥取環境大学 2013年 第5問
以下の問に答えよ.

(1)次の$(ⅰ)$~$(ⅲ)$の文章が命題であれば真偽を答えよ.また真の場合は理由を示し,偽の場合は反例を示せ.命題でない場合は「命題でない」と答えよ.

(i) $x$が整数ならば$x^2 \geqq 0$である.
(ii) $n$が$2$以上の整数であるとき$2^n-1$はすべて素数である.
(iii) 数学は美しい.

(2)次の$(ⅰ)$~$\tokeigo$の$[ ]$の中に,必要条件であるが十分条件でない,十分条件であるが必要条件でない,必要十分条件である,必要条件でも十分条件でもない,のいずれが当てはまるか答えよ.

(i) $x$が偶数であることは,$x$が整数であるための$[ ]$.
(ii) 三角形$\mathrm{ABC}$のどれかひとつの辺の長さの$2$乗がのこりの$2$辺の長さの$2$乗の和に等しいことは,三角形$\mathrm{ABC}$が直角三角形であるための$[ ]$.
(iii) $x,\ y$がともに有理数のとき,$y>2x^2$であることは,$y>x^2-2x-2$であるための$[ ]$.
\mon[$\tokeishi$] 四角形$\mathrm{ABCD}$の内角が$4$つとも$90^\circ$であることは,四角形$\mathrm{ABCD}$が正方形であるための$[ ]$.
\mon[$\tokeigo$] 四角形$\mathrm{ABCD}$の辺の長さがすべて等しいことは,四角形$\mathrm{ABCD}$が長方形であるための$[ ]$.

(3)次の命題(ア),(イ)の逆,裏,対偶をそれぞれ書け.また,元の命題,逆,裏,対偶の真偽をそれぞれ答えよ.

\mon[(ア)] $\sqrt{n}$が有理数ならば$n$は有理数である.
\mon[(イ)] $n$を整数とする.$n$が奇数ならば$n^2$は奇数である.
京都大学 国立 京都大学 2012年 第4問
次の命題(p),(q)のそれぞれについて,正しいかどうか答えよ.正しければ証明し,正しくなければ反例を挙げて正しくないことを説明せよ.

\mon[(p)] 正$n$角形の頂点から$3$点を選んで内角の$1$つが$60^\circ$である三角形を作ることができるならば,$n$は$3$の倍数である.
\mon[(q)] $\triangle \mathrm{ABC}$と$\triangle \mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}^\prime$において,$\mathrm{AB}=\mathrm{A}^\prime \mathrm{B}^\prime$,$\mathrm{BC}=\mathrm{B}^\prime \mathrm{C}^\prime$,$\angle \mathrm{A}=\angle \mathrm{A}^\prime$ならば,これら$2$つの三角形は合同である.
京都大学 国立 京都大学 2012年 第5問
次の命題(p),(q)のそれぞれについて,正しいかどうか答えよ.正しければ証明し,正しくなければ反例を挙げて正しくないことを説明せよ.

\mon[(p)] 正$n$角形の頂点から$3$点を選んで内角の$1$コが$60^\circ$である三角形を作ることができるならば,$n$は$3$の倍数である.
\mon[(q)] $\triangle \mathrm{ABC}$と$\triangle \mathrm{ABD}$において,$\mathrm{AC}<\mathrm{AD}$かつ$\mathrm{BC}<\mathrm{BD}$ならば.$\angle \mathrm{C} > \angle \mathrm{D}$である.
法政大学 私立 法政大学 2012年 第3問
四角形$\mathrm{ABCD}$は,$4$つの内角がいずれも${180}^\circ$より小さく,$\mathrm{AB}=3$,$\mathrm{BC}=\sqrt{2}$,$\mathrm{CD}=\sqrt{6}$,$\mathrm{AD}=1$を満たすとする.

(1)$\angle \mathrm{BAD}={60}^\circ$のとき,$\cos \angle \mathrm{BCD}$の値を求めよ.
(2)${90}^\circ \leqq \angle \mathrm{BAD}$であり,$\triangle \mathrm{ABD}$の外接円の半径が$\displaystyle \frac{3 \sqrt{6}}{4}$のとき,$\triangle \mathrm{BCD}$の外接円の半径を求めよ.
首都大学東京 公立 首都大学東京 2012年 第4問
内角がすべて$180^\circ$より小さい四角形$\mathrm{ABCD}$に対し,$\overrightarrow{a}=\overrightarrow{\mathrm{AB}},\ \overrightarrow{b}=\overrightarrow{\mathrm{AD}}$とおく.$\mathrm{G}$は
\[ \overrightarrow{\mathrm{GA}} +\overrightarrow{\mathrm{GB}} + \overrightarrow{\mathrm{GC}} + \overrightarrow{\mathrm{GD}} = \overrightarrow{\mathrm{0}} \]
を満たす点とする.$\overrightarrow{\mathrm{AC}}=s\overrightarrow{a}+t\overrightarrow{b} \quad (s,\ t \text{は正の実数})$と表すとき,以下の問いに答えなさい.

(1)$\overrightarrow{\mathrm{AG}}$を$\overrightarrow{a},\ \overrightarrow{b}$と実数$s,\ t$を用いて表しなさい.
(2)点$\mathrm{G}$が線分$\mathrm{BD}$上にあるとき,$s$と$t$の満たす関係式を求めなさい.
(3)$s$と$t$が$(2)$で求めた関係式を満たすとき,線分$\mathrm{AC}$の中点は線分$\mathrm{BD}$上にあることを示しなさい.
(4)$s$と$t$が$(2)$で求めた関係式を満たすとき,$\triangle \mathrm{ABD}$と$\triangle \mathrm{BCD}$の面積は等しくなることを示しなさい.
スポンサーリンク

「内角」とは・・・

 まだこのタグの説明は執筆されていません。