タグ「内積」の検索結果

25ページ目:全250問中241問~250問を表示)
琉球大学 国立 琉球大学 2010年 第2問
次の問いに答えよ.

(1)$a$を実数とする.$x$に関する方程式$4^x-2^{a+x}+2^a=0$が実数解を持つように$a$の値の範囲を求めよ.
(2)三角形ABCの三辺を$\text{AB}=4,\ \text{AC}=3,\ \text{BC}=\sqrt{13}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおくとき,内積$\overrightarrow{b} \cdot \overrightarrow{c}$の値を求めよ.また,三角形ABCの重心をGとするとき,線分AGの長さを求めよ.
千葉大学 国立 千葉大学 2010年 第7問
$\triangle \mathrm{ABC}$は,1辺の長さが1の正三角形で,$t$は正の実数とする.$\overrightarrow{b}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{AC}}$とおく.直線$\mathrm{AB},\ \mathrm{AC}$上にそれぞれ点$\mathrm{D},\ \mathrm{E}$があり,$\overrightarrow{\mathrm{AD}}=t \overrightarrow{b}$,$\overrightarrow{\mathrm{AE}}=t \overrightarrow{c}$をみたしている.正三角形$\triangle \mathrm{ADE}$の重心を$\mathrm{G}$,線分$\mathrm{BE}$の中点を$\mathrm{M}$とする.

(1)内積$\overrightarrow{\mathrm{MC}} \cdot \overrightarrow{\mathrm{MG}}$を計算せよ.
(2)$t$が正の実数全体を動くとき,$\triangle \mathrm{CGM}$の面積を最小にする$t$の値と,そのときの面積を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第5問
次の問いに答えよ.

(1)$1$から$9$までの整数がひとつずつ書かれた$9$個の玉が入っている袋の中から玉を$3$個取り出す.取り出した玉に書かれた整数の和が$12$以上となる確率を求めよ.
(2)円$x^2+y^2=1$と放物線$y=x^2+5$との共通の接線のうち,円と第$1$象限で接する接線の方程式を求めよ.
(3)平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して$|\overrightarrow{\mathrm{AB}}|=1$,$|\overrightarrow{\mathrm{AC}}|=5$,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=3$である.$|\overrightarrow{\mathrm{BC}}|$を求めよ.ただし,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$は$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の内積とする.
福岡教育大学 国立 福岡教育大学 2010年 第4問
空間上に相異なる$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,線分$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$は互いに直交している.次の問いに答えよ.

(1)$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$からの距離が全て等しくなる点がただ一つ存在する.この点を$\mathrm{G}$とする.線分$\mathrm{OA}$の中点を$\mathrm{M}$とする.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{MG}}$が直交することを用いて,
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OG}}=\frac{1}{2}|\overrightarrow{\mathrm{OA}}|^2 \]
となることを示せ.ただし,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OG}}$は$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OG}}$の内積とする.
(2)(1)を用いて,
\[ \overrightarrow{\mathrm{OG}}=\frac{1}{2}(\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}) \]
が成り立つことを示せ.
(3)$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{P}(1,\ \sqrt{3},\ 0)$,$\displaystyle \mathrm{Q} \left( -\frac{\sqrt{6}}{2},\ \frac{\sqrt{2}}{2},\ \sqrt{2} \right)$,$\displaystyle \mathrm{R} \left( \frac{\sqrt{6}}{4},\ -\frac{\sqrt{2}}{4},\ \frac{\sqrt{2}}{2} \right)$とする.このとき線分$\mathrm{OP}$,$\mathrm{OQ}$,$\mathrm{OR}$は互いに直交していることを示せ.また,$4$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る球面の半径を求めよ.
東京海洋大学 国立 東京海洋大学 2010年 第4問
三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$1:2$に内分する点を$\mathrm{Q}$,辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{R}$,辺$\mathrm{AB}$の中点を$\mathrm{S}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{PR}} \perp \overrightarrow{\mathrm{QS}}$となるための条件を$|\overrightarrow{a}|$,$|\overrightarrow{b}|$と内積$\overrightarrow{a} \cdot \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{PR}} \perp \overrightarrow{\mathrm{QS}}$かつ$|\overrightarrow{a}|=1$のとき,$|\overrightarrow{b}|$のとりうる値の範囲を求めよ.
北海学園大学 私立 北海学園大学 2010年 第4問
三角形$\mathrm{ABC}$において$\mathrm{AB}=2$,$\mathrm{CA}=3$とする.この三角形の外接円の中心を$\mathrm{O}$,辺$\mathrm{AB}$と$\mathrm{CA}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.また,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OA}}=s \overrightarrow{a}+t \overrightarrow{b}$,$\angle \mathrm{CAB}=\theta$とする.ただし,$s,\ t$は実数とする.

(1)ベクトル$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$s$,$t$の式で表せ.また,内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$\theta$の式で表せ.
(2)$\mathrm{BC}=4$のとき,$\cos \theta$,$s$,$t$の値をそれぞれ求めよ.
(3)$\displaystyle s=\frac{2}{3}$のとき,$t$と$\cos \theta$の値を求めよ.
龍谷大学 私立 龍谷大学 2010年 第2問
大きさ$\sqrt{3}$のベクトル$\overrightarrow{a}$と大きさ$2$のベクトル$\overrightarrow{b}$を考える.$\overrightarrow{a}$と$\overrightarrow{b}$のなす角$\theta$が$\displaystyle \cos \theta=\frac{1}{4}$を満たすとき,次の問いに答えなさい.

(1)$\overrightarrow{a}$と$\overrightarrow{b}$の内積を求めなさい.
(2)$\overrightarrow{p}=(\cos t) \overrightarrow{a}+(\sin t) \overrightarrow{b}$,$\overrightarrow{q}=(-\sin t) \overrightarrow{a}+(\cos t) \overrightarrow{b}$とするとき,${|\overrightarrow{q|-\overrightarrow{p}}}^2$を$t$で表しなさい.
(3)$0 \leqq t \leqq \pi$の範囲で(2)の${|\overrightarrow{q|-\overrightarrow{p}}}^2$の最大値と最小値を求めなさい.
首都大学東京 公立 首都大学東京 2010年 第2問
原点をOとする座標平面上のベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$は$|\overrightarrow{\mathrm{OA}}|=\sqrt{17},\ |\overrightarrow{\mathrm{OB}}|=\sqrt{10}$を満たし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角$\theta$が$\displaystyle \cos \theta =- \frac{13}{\sqrt{170}}$を満たしている.ベクトル$\overrightarrow{u},\ \overrightarrow{v}$を$\displaystyle \overrightarrow{u} = \frac{\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}}{2},\ \overrightarrow{v}=\frac{\overrightarrow{\mathrm{OA}}-\overrightarrow{\mathrm{OB}}}{2}$で定める.このとき,以下の問いに答えなさい.

(1)長さ$|\overrightarrow{u}|,\ |\overrightarrow{v}|$と内積$\overrightarrow{u} \cdot \overrightarrow{v}$を求めなさい.
(2)実数$t$に対して$\overrightarrow{\mathrm{OP}} = t \overrightarrow{u}+(1-t)\overrightarrow{v}$とおく.長さ$|\overrightarrow{\mathrm{OP}}|$を最小にする$t$の値を求めなさい.また,そのときの長さ$|\overrightarrow{\mathrm{OP}}|$を求めなさい.
兵庫県立大学 公立 兵庫県立大学 2010年 第2問
図のような$\mathrm{OA}=m,\ \mathrm{OB}=n$である三角形$\mathrm{OAB}$が \\
ある.辺$\mathrm{AB}$を$m:n$に内分する点を$\mathrm{C}$とする. \\
$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,$\overrightarrow{a}$と$\overrightarrow{b}$の内積を \\
$(\overrightarrow{a},\ \overrightarrow{b})=k$とする.以下の問いに答えなさい.
\img{562_2720_2010_1}{32}

(1)$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b},\ m,\ n$を用いて表しなさい.
(2)内積$(\overrightarrow{a},\ \overrightarrow{c})$と$(\overrightarrow{b},\ \overrightarrow{c})$を$k,\ m,\ n$を用いて表しなさい.
(3)$\angle \mathrm{AOC}=\angle \mathrm{BOC}$であることを示しなさい.
県立広島大学 公立 県立広島大学 2010年 第2問
三角形OABにおいて,
\[ \text{AB}=4,\ \text{OA}=5,\ \text{OB}=6,\ \angle \text{AOB}=\theta,\ \overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b} \]
とする.

(1)$\cos \theta$の値を求めよ.
(2)三角形OABの面積を求めよ.
(3)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(4)$t$を実数とするとき,$|\overrightarrow{a}+t\overrightarrow{b}|$の最小値とそのときの$t$の値を求めよ.
スポンサーリンク

「内積」とは・・・

 まだこのタグの説明は執筆されていません。