タグ「内積」の検索結果

24ページ目:全250問中231問~240問を表示)
宮崎大学 国立 宮崎大学 2010年 第4問
すべての辺の長さが1の四角錐がある.この四角錐の頂点をO,底面を正方形ABCDとし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.このとき,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{OD}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{b} \cdot \overrightarrow{c},\ \overrightarrow{c} \cdot \overrightarrow{a}$をそれぞれ求めよ.
(3)点P,O,B,Cが正四面体の頂点となるようなすべての点Pについて,$\overrightarrow{\mathrm{OP}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
宮崎大学 国立 宮崎大学 2010年 第3問
すべての辺の長さが1の四角錐がある.この四角錐の頂点をO,底面を正方形ABCDとし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.このとき,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{OD}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{b} \cdot \overrightarrow{c},\ \overrightarrow{c} \cdot \overrightarrow{a}$をそれぞれ求めよ.
(3)点P,O,B,Cが正四面体の頂点となるようなすべての点Pについて,$\overrightarrow{\mathrm{OP}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
宮崎大学 国立 宮崎大学 2010年 第3問
すべての辺の長さが1の四角錐がある.この四角錐の頂点を$\mathrm{O}$,底面を正方形$\mathrm{ABCD}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.このとき,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{OD}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{b} \cdot \overrightarrow{c},\ \overrightarrow{c} \cdot \overrightarrow{a}$をそれぞれ求めよ.
(3)点$\mathrm{P}$,$\mathrm{O}$,$\mathrm{B}$,$\mathrm{C}$が正四面体の頂点となるようなすべての点$\mathrm{P}$について,$\overrightarrow{\mathrm{OP}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
熊本大学 国立 熊本大学 2010年 第2問
曲線$C:x^2+y^2=1 \ (x \geqq 0,\ y \geqq 0)$上に3点A$\displaystyle \left( \frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$,P$(1,\ 0)$,Q$(0,\ 1)$をとり,$\displaystyle \angle \text{POR}=\theta \ \left( 0<\theta < \frac{\pi}{4} \right)$となる$C$上の点をR$(s,\ t)$とする.さらに,$C$上の点Xを2つのベクトル$s \overrightarrow{\mathrm{OA}}-t\overrightarrow{\mathrm{OX}}$と$t \overrightarrow{\mathrm{OA}}-s\overrightarrow{\mathrm{OX}}$が垂直になるようにとる.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OX}}$の内積の値を$\theta$を用いて表せ.
(2)条件をみたすXが弧AP上にとれるとき,$\theta$の範囲を求めよ.
(3)(2)で求めた$\theta$の範囲において,$\triangle$ROXの面積の最大値を求めよ.
山口大学 国立 山口大学 2010年 第1問
$\triangle \mathrm{OAB}$において,$\mathrm{OA}=5,\ \mathrm{OB}=3,\ \mathrm{AB}=6$とし,$\angle \mathrm{AOB}$の大きさを$\theta$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えなさい.

(1)$\cos \theta$の値を求めなさい.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めなさい.
(3)$x$が実数全体を動くとき,$|(2+x)\overrightarrow{a}+(1-x)\overrightarrow{b}|$の最小値を求めなさい.また,そのときの$x$の値も求めなさい.
山口大学 国立 山口大学 2010年 第1問
$3$辺が$\mathrm{AB}=4,\ \mathrm{BC}=6,\ \mathrm{CA}=5$である$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$,$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問いに答えなさい.

(1)$\triangle \mathrm{ABC}$の外接円の半径を求めなさい.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$を求めなさい.
(3)$\mathrm{OB} \perp \mathrm{AD}$を示しなさい.
山形大学 国立 山形大学 2010年 第2問
1辺の長さが2の正三角形ABCがある.辺ABの中点をP,線分PBの中点をQ,辺BCを$2:1$に内分する点をR,線分PRと線分CQの交点をSとする.さらに,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.このとき,次の問に答えよ.

(1)内積$\overrightarrow{b} \cdot \overrightarrow{c}$の値を求めよ.
(2)$\overrightarrow{\mathrm{AR}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AS}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)$|\overrightarrow{\mathrm{AS}}|$の値を求めよ.
(5)三角形APSの面積を求めよ.
福井大学 国立 福井大学 2010年 第1問
空間内に4点O,A,B,Cがあり,$\text{OA}=\text{OB}=\sqrt{5},\ \text{OC}=1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくと,$\overrightarrow{a} \cdot \overrightarrow{b}=4,\ \overrightarrow{b} \cdot \overrightarrow{c}=1$が成り立っている.2点A,Cから直線OBにそれぞれ垂線を下ろし,直線OBとの交点をD,Eとする.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{DA}},\ \overrightarrow{\mathrm{EC}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{c}$のとりうる値の範囲を求めよ.
(3)4点O,A,B,Cが同一平面上にない場合,四面体OABCの体積が最大になるときの$\overrightarrow{a} \cdot \overrightarrow{c}$の値と体積の最大値を求めよ.
愛媛大学 国立 愛媛大学 2010年 第5問
次の問いに答えよ.

(1)次の連立不等式を解け.
\[ \left\{
\begin{array}{l}
4x^2-4x-15<0 \\
x^2-2x \geqq 0
\end{array}
\right. \]
(2)$\displaystyle \frac{1}{x}+\frac{1}{y}=\frac{1}{3}$と$x \leqq y$の両方をみたす自然数の組$(x,\ y)$をすべて求めよ.
(3)方程式$\displaystyle \left( \log_2\sqrt{x}+\log_2x^2+\log_2\frac{1}{x} \right)^2=9$を解け.
(4)原点O,および3点A$(1,\ 0,\ 0)$,B$(0,\ 1,\ 0)$,C$(0,\ 0,\ 1)$がある.$0<s<1$に対して,線分AB,線分CAを$s:(1-s)$に内分する点を,それぞれP,Qとするとき,内積$\overrightarrow{\mathrm{OP}}\cdot \overrightarrow{\mathrm{OQ}}$を$s$を用いて表せ.
(5)等式$\displaystyle \int_0^{\frac{\pi}{4}} (x+a) \cos 2x \, dx=\frac{\pi}{8}$が成り立つとき,定数$a$の値を求めよ.
新潟大学 国立 新潟大学 2010年 第1問
四面体OABCにおいて,$\text{OA}=\text{OB}=\text{OC}=3$,$\text{AB}=\text{BC}=\text{CA}=\sqrt{6}$である.また,点Pは辺ABを$x:1-x$に内分し,点Qは辺OCを$y:1-y$に内分する($0<x<1$,$0<y<1$).$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$として,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ x,\ y$で表せ.
(3)2点P,Qの間の距離PQの最小値と,そのときの$x,\ y$の値を求めよ.
スポンサーリンク

「内積」とは・・・

 まだこのタグの説明は執筆されていません。