タグ「内積」の検索結果

23ページ目:全250問中221問~230問を表示)
広島大学 国立 広島大学 2010年 第2問
座標平面上に点O$(0,\ 0)$と点P$(4,\ 3)$をとる.不等式$(x-5)^2 +(y-10)^2 \leqq 16$の表す領域を$D$とする.次の問いに答えよ.

(1)$k$は定数とする.直線$\displaystyle y = -\frac{4}{3}x+k$上の点をQとするとき,ベクトル$\overrightarrow{\mathrm{OQ}}$と$\overrightarrow{\mathrm{OP}}$の内積$\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OP}}$を$k$を用いて表せ.
(2)点Rが$D$全体を動くとき,ベクトル$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OR}}$の内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OR}}$の最大値および最小値を求めよ.
広島大学 国立 広島大学 2010年 第1問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す1次変換$f$によって,点P$_1(1,\ 0)$が点P$_2(0,\ 3)$に移され,点P$_2$が点P$_3$に,点P$_3$が点P$_1(1,\ 0)$にそれぞれ移されるとする.次の問いに答えよ.ただし,$a,\ b,\ c,\ d$は実数である.

(1)行列$A$を求めよ.
(2)自然数$n$に対して$A^n$を求めよ.
(3)O$(0,\ 0)$とする.点P$(\cos \theta,\ \sin \theta)$が$f$によって点Qに移されるとする.$0 \leqq \theta \leqq 2\pi$のとき,ベクトル$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$の内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}$のとり得る値の範囲を求めよ.
東北大学 国立 東北大学 2010年 第4問
四面体ABCDにおいて,辺AB の中点をM,辺CDの中点をNとする.以下の問いに答えよ.

(1)等式
\[ \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}} = \overrightarrow{\mathrm{PC}}+ \overrightarrow{\mathrm{PD}} \]
を満たす点Pは存在するか.証明をつけて答えよ.
(2)点Qが等式
\[ |\overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QB}}| = |\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}| \]
を満たしながら動くとき,点Qが描く図形を求めよ.
(3)点Rが等式
\[ |\overrightarrow{\mathrm{RA}}|^2 + |\overrightarrow{\mathrm{RB}}|^2 = |\overrightarrow{\mathrm{RC}}|^2 + |\overrightarrow{\mathrm{RD}}|^2 \]
を満たしながら動くとき,内積$\overrightarrow{\mathrm{MN}} \cdot \overrightarrow{\mathrm{MR}}$はRのとり方によらず一定であることを示せ.
(4)(2)の点Qが描く図形と(3)の点Rが描く図形が一致するための必要十分条件は$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$であることを示せ.
東北大学 国立 東北大学 2010年 第4問
四面体ABCDにおいて,辺AB の中点をM,辺CDの中点をNとする.以下の問いに答えよ.

(1)等式
\[ \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}} = \overrightarrow{\mathrm{PC}}+ \overrightarrow{\mathrm{PD}} \]
を満たす点Pは存在するか.証明をつけて答えよ.
(2)点Qが等式
\[ |\overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QB}}| = |\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}| \]
を満たしながら動くとき,点Qが描く図形を求めよ.
(3)点Rが等式
\[ |\overrightarrow{\mathrm{RA}}|^2 + |\overrightarrow{\mathrm{RB}}|^2 = |\overrightarrow{\mathrm{RC}}|^2 + |\overrightarrow{\mathrm{RD}}|^2 \]
を満たしながら動くとき,内積$\overrightarrow{\mathrm{MN}} \cdot \overrightarrow{\mathrm{MR}}$はRのとり方によらず一定であることを示せ.
(4)(2)の点Qが描く図形と(3)の点Rが描く図形が一致するための必要十分条件は$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$であることを示せ.
金沢大学 国立 金沢大学 2010年 第2問
座標空間において,中心がA$(0,\ 0,\ a) \ (a>0)$で半径が$r$の球面
\[ x^2+y^2+(z-a)^2 = r^2 \]
は,点B$(\sqrt{5},\ \sqrt{5},\ a)$と点$(1,\ 0,\ -1)$を通るものとする.次の問いに答えよ.

(1)$r$と$a$の値を求めよ.
(2)点P$(\cos t,\ \sin t,\ -1)$について,ベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AP}}$を求めよ.さらに内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AP}}$を求めよ.
(3)$\triangle$ABPの面積$S$を$t$を用いて表せ.また,$t$が$0 \leqq t \leqq 2\pi$の範囲を動くとき,$S$の最小値と,そのときの$t$の値を求めよ.
愛媛大学 国立 愛媛大学 2010年 第1問
次の問いに答えよ.

(1)次の連立不等式を解け.
\[ \left\{
\begin{array}{l}
4x^2-4x-15<0 \\
x^2-2x \geqq 0
\end{array}
\right. \]
(2)鈍角三角形ABCにおいて,$\text{BC}=1,\ \text{CA}=\sqrt{3},\ \angle \text{A}=30^\circ$であるとき,ABの長さを求めよ.
(3)原点O,および3点A$(1,\ 0,\ 0)$,B$(0,\ 1,\ 0)$,C$(0,\ 0,\ 1)$がある.$0<s<1$に対して,線分AB,線分CAを$s:(1-s)$に内分する点を,それぞれP,Qとするとき,内積$\overrightarrow{\mathrm{OP}}\cdot \overrightarrow{\mathrm{OQ}}$を$s$を用いて表せ.
(4)方程式$\displaystyle \left( \log_2\sqrt{x}+\log_2x^2+\log_2\frac{1}{x} \right)^2=9$を解け.
(5)数列$1,\ a,\ b,\ c$はこの順に等差数列であり,数列$a,\ b,\ 1,\ c$はこの順に等比数列であるとする.このとき,$c=1$であることを示せ.
香川大学 国立 香川大学 2010年 第1問
点Oを中心とし,半径1の円に内接する$\triangle$ABCが
\[ \overrightarrow{\mathrm{OA}}+\sqrt{3} \; \overrightarrow{\mathrm{OB}}+2 \; \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
をみたしている.このとき,次の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}, \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}$を求めよ.
(2)$\angle \text{AOB},\ \angle \text{AOC}$を求めよ.
(3)$\triangle$ABCの面積を求めよ.
(4)辺BCの長さ,および頂点Aから対辺BCに引いた垂線の長さを求めよ.
香川大学 国立 香川大学 2010年 第1問
点Oを中心とし,半径1の円に内接する$\triangle$ABCが
\[ \overrightarrow{\mathrm{OA}}+\sqrt{3} \; \overrightarrow{\mathrm{OB}}+2 \; \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
をみたしている.このとき,次の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}, \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}$を求めよ.
(2)$\angle \text{AOB},\ \angle \text{AOC}$を求めよ.
(3)$\triangle$ABCの面積を求めよ.
(4)辺BCの長さ,および頂点Aから対辺BCに引いた垂線の長さを求めよ.
香川大学 国立 香川大学 2010年 第1問
点Oを中心とし,半径1の円に内接する$\triangle$ABCが
\[ \overrightarrow{\mathrm{OA}}+\sqrt{3} \; \overrightarrow{\mathrm{OB}}+2 \; \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
をみたしている.このとき,次の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}, \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}$を求めよ.
(2)$\angle \text{AOB},\ \angle \text{AOC}$を求めよ.
(3)$\triangle$ABCの面積を求めよ.
(4)辺BCの長さ,および頂点Aから対辺BCに引いた垂線の長さを求めよ.
三重大学 国立 三重大学 2010年 第2問
四面体OABCは,$\text{OA}=\sqrt{5},\ \text{OB}=\text{OC}=5,\ \text{AB}=\text{AC}=\sqrt{30},\ \text{BC}=5\sqrt{2}$を満たすものとする.辺OBを$2:1$に外分する点をD,辺OCを$3:2$に外分する点をEとする.Oから直線DEに引いた垂線と直線BCとの交点をFとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{b} \cdot \overrightarrow{c},\ \overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(2)$\overrightarrow{\mathrm{OF}}$と$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)線分OFの長さと線分AFの長さおよび$\cos \angle \text{OFA}$の値を求めよ.
スポンサーリンク

「内積」とは・・・

 まだこのタグの説明は執筆されていません。