タグ「内積」の検索結果

21ページ目:全250問中201問~210問を表示)
岐阜大学 国立 岐阜大学 2011年 第3問
平面上に点Oを中心とする半径1の円$S$と$S$に内接する正三角形ABCがある.以下の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(3)平面上の任意の点Pに対して,以下の不等式が成り立つことを示せ.
\[ \text{AP}^2+\text{BP}^2+\text{CP}^2 \geqq 3 \]
また,等号が成り立つのはどのようなときか答えよ.
(4)円$S$の周上の任意の点Qに対して,
\[ (\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OQ}})^2+(\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OQ}})^2+(\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OQ}})^2=\frac{3}{2} \]
となることを示せ.
(5)円$S$の周上の任意の点Qに対して,
\[ \text{AQ}^4+\text{BQ}^4+\text{CQ}^4 \]
の値を求めよ.
新潟大学 国立 新潟大学 2011年 第3問
$\triangle$OABにおいて,$\text{OA}=1,\ \text{OB}=\text{AB}=2$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\angle \text{AOB}$の二等分線上の点Pが$\text{AP}=\text{BP}$を満たすとき,線分APの長さを求めよ.
新潟大学 国立 新潟大学 2011年 第1問
$\triangle$OABにおいて,$\text{OA}=1,\ \text{OB}=\text{AB}=2$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.実数$t$に対して,
\[ \overrightarrow{\mathrm{OP}}=t \left( \overrightarrow{a}+\frac{1}{2}\overrightarrow{b} \right) \]
とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\text{AP}=\text{BP}$を満たすとき,$t$の値を求めよ.さらに線分APの長さを求めよ.
山梨大学 国立 山梨大学 2011年 第2問
$\triangle \mathrm{OAB}$において,$\mathrm{OA}=2,\ \mathrm{OB}=3,\ \mathrm{AB}=k$とする.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を$k$を用いて表し,$k$の値の範囲を求めよ.
(2)点$\mathrm{A}$を通り直線$\mathrm{OB}$に垂直な直線と直線$\mathrm{OB}$との交点を$\mathrm{P}$としたとき,$\overrightarrow{\mathrm{OP}}=s\overrightarrow{\mathrm{OB}}$を満たす$s$を$k$を用いて表せ.また,線分$\mathrm{AP}$の長さを$k$を用いて表せ.
(3)辺$\mathrm{AB}$の中点を$\mathrm{Q}$とし,直線$\mathrm{OQ}$と直線$\mathrm{AP}$の交点を$\mathrm{R}$とする.$k=4$のとき線分$\mathrm{OR}$の長さを求めよ.
福井大学 国立 福井大学 2011年 第3問
平面上に$\text{OA}=\text{OB}=1$である二等辺三角形OABがあり,線分ABを$2:1$に内分する点をC,$2:1$に外分する点をDとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ k=\overrightarrow{a} \cdot \overrightarrow{b}$とおくとき,以下の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OD}}$を求めよ.
(2)$\angle \text{AOB}=\angle \text{COD}$となるときの$k$の値$k_0$を求めよ.
(3)$\angle \text{APD}=90^\circ,\ \text{OP}=1$を満たす点Pに対し,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ k$を用いて表せ.
室蘭工業大学 国立 室蘭工業大学 2011年 第4問
平行四辺形OABCにおいて,$|\overrightarrow{\mathrm{OA}}|=|\overrightarrow{\mathrm{OC}}|=1$,かつ$\angle \text{AOC}=120^\circ$であるとする.また,$s,\ t$を実数とし,2点P,Qをそれぞれ$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+(1-s) \overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OQ}}=t \overrightarrow{\mathrm{OB}}$と定める.

(1)内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}$を$t$を用いて表せ.
(2)内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{PQ}}$が0のとき,内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}$を$s$を用いて表せ.
(3)(2)の条件のもとで,さらに点Qが線分OB上にあるような$s$の値の範囲を求めよ.
高知大学 国立 高知大学 2011年 第1問
空間ベクトル$\overrightarrow{a}=(-1,\ 3,\ -2)$,$\overrightarrow{b}=(1,\ -1,\ 0)$,$\overrightarrow{c}=\overrightarrow{a}+t \overrightarrow{b}$とするとき,次の問いに答えよ.ただし,$t$は任意の正の実数とする.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$と$\overrightarrow{a} \cdot \overrightarrow{c}$を求めよ.
(2)$\overrightarrow{a}$と$\overrightarrow{c}$が垂直になるときの$t$の値を求めよ.
(3)$|\overrightarrow{c}|^2$を$t$で表せ.
(4)$|\overrightarrow{c}|$の最小値とそのときの$t$の値を求めよ.
(5)$|\overrightarrow{c}|=|\overrightarrow{a}|$となる$t$の値を求めよ.
福井大学 国立 福井大学 2011年 第2問
$1$辺の長さが$1$の正十二面体を考える.点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$, \\
$\mathrm{E}$,$\mathrm{F}$を図に示す正十二面体の頂点とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$, \\
$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ. \\
なお,正十二面体では,すべての面は合同な正五角形であり, \\
各頂点は$3$つの正五角形に共有されている.
\img{366_2546_2011_1}{36}


(1)$1$辺の長さが$1$の正五角形の対角線の長さを求めて, \\
内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{CD}}$,$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\mathrm{O}$から平面$\mathrm{ABD}$に垂線$\mathrm{OH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.さらにその長さを求めよ.
長崎大学 国立 長崎大学 2011年 第2問
$3$辺の長さが$\mathrm{AB}=4,\ \mathrm{BC}=3,\ \mathrm{CA}=5$である直角三角形$\mathrm{ABC}$と,その内側にあって$2$辺$\mathrm{AB}$および$\mathrm{AC}$に接する円$\mathrm{O}$を考える.この円の半径を$r$とし,中心$\mathrm{O}$から$\mathrm{AB}$に引いた垂線と$\mathrm{AB}$との交点を$\mathrm{H}$とする.また,ベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$と同じ向きで大きさが$1$のベクトルを,それぞれ$\overrightarrow{u},\ \overrightarrow{v}$とし,$\overrightarrow{\mathrm{AH}}=t \overrightarrow{u} \ (t>0)$とする.次の問いに答えよ.

(1)直線$\mathrm{AO}$と辺$\mathrm{BC}$の交点を$\mathrm{M}$とするとき,ベクトル$\overrightarrow{\mathrm{AM}}$を$\overrightarrow{u}$と$\overrightarrow{v}$を用いて表せ.
(2)ベクトル$\overrightarrow{u},\ \overrightarrow{v}$の内積$\overrightarrow{u} \cdot \overrightarrow{v}$を求め,ベクトル$\overrightarrow{\mathrm{AO}}$と$\overrightarrow{\mathrm{HO}}$を,それぞれ$\overrightarrow{u},\ \overrightarrow{v}$および$t$を用いて表せ.また,円$\mathrm{O}$の半径$r$を$t$で表せ.
(3)円$\mathrm{O}$が辺$\mathrm{BC}$にも接するとき,その中心を$\mathrm{I}$とする.すなわち,$\mathrm{I}$は三角形$\mathrm{ABC}$の内心である.そのときの$t$の値と,内接円$\mathrm{I}$の半径を求めよ.
(4)円$\mathrm{O}$と内接円$\mathrm{I}$が共有点をもたないような$t$の範囲を求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第2問
$\mathrm{AB}=4$,$\mathrm{BC}=5$,$\mathrm{CA}=6$であるような$\triangle \mathrm{ABC}$において,$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$,辺$\mathrm{CA}$の中点を$\mathrm{E}$,線分$\mathrm{AD}$と線分$\mathrm{BE}$の交点を$\mathrm{F}$とする.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を求めよ.
(2)$\overrightarrow{\mathrm{AD}}=t \overrightarrow{\mathrm{AB}}+(1-t) \overrightarrow{\mathrm{AC}} (0 \leqq t \leqq 1)$とおくとき,内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AD}}$および$\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AD}}$を$t$を用いて表せ.
(3)$t$の値を求めよ.
(4)$\mathrm{AF}:\mathrm{FD}$を求めよ.
スポンサーリンク

「内積」とは・・・

 まだこのタグの説明は執筆されていません。