タグ「内積」の検索結果

20ページ目:全250問中191問~200問を表示)
広島大学 国立 広島大学 2011年 第4問
平面上で,線分ABを$1:2$に内分する点をO,線分ABを$1:4$に外分する点をCとする.Pを直線AB上にない点とし,$\overrightarrow{\mathrm{PO}}$と$\overrightarrow{\mathrm{PC}}$が垂直であるとする.$\overrightarrow{\mathrm{PA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{PB}}=\overrightarrow{b}$とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{PO}},\ \overrightarrow{\mathrm{PC}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)$\overrightarrow{a}$と$\overrightarrow{b}$の内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$|\overrightarrow{a}|,\ |\overrightarrow{b}|$で表せ.
(3)$\text{PA}=1,\ \triangle \text{PAB}$の面積が$\displaystyle \frac{3}{2}$のとき,PBの長さを求めよ.
富山大学 国立 富山大学 2011年 第3問
平面内の2つの単位ベクトル$\overrightarrow{a}$と$\overrightarrow{b}$に対して
\[ \overrightarrow{v} = \frac{1}{2 \sin \frac{\theta}{2}} (\overrightarrow{b}-\overrightarrow{a}) \]
とおく.ただし,$\theta$は$\overrightarrow{a}$と$\overrightarrow{b}$のなす角であり,$0<\theta<\pi$とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{v}$と$\overrightarrow{b} \cdot \overrightarrow{v}$を$\theta$を用いて表せ.
(2)$\overrightarrow{x}$を,$\overrightarrow{a}$に垂直で,$\overrightarrow{x} \cdot \overrightarrow{b}>0$をみたす単位ベクトルとする.このとき$\overrightarrow{x}$を$\overrightarrow{a}$と$\overrightarrow{v}$を用いて表せ.
(3)$\displaystyle \theta=\frac{\pi}{6}$のとき,$\overrightarrow{a} \cdot \overrightarrow{v}$の値を求めよ.
福井大学 国立 福井大学 2011年 第1問
1辺の長さが1の正十二面体を考える.点O,A,B,C,D, \\
E,F,Gを図に示す正十二面体の頂点とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$, \\
$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ. \\
ただし,1辺の長さが1の正五角形の対角線の長さは \\
$\displaystyle \frac{1+\sqrt{5}}{2}$であることを用いてよい.なお,正十二面体では, \\
すべての面は合同な正五角形であり, 各頂点は$3$つの正五 \\
角形に共有されている.
\img{366_2547_2011_1}{55}

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{CD}}$,$\overrightarrow{\mathrm{BE}}$,$\overrightarrow{\mathrm{OD}}$,$\overrightarrow{\mathrm{OE}}$,$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{DF}}$と$\overrightarrow{\mathrm{EF}}$のなす角を求めよ.
香川大学 国立 香川大学 2011年 第1問
$\triangle$ABCの外接円の半径は1である.この外接円の中心Oから3つの辺BC,CA,ABへ下ろした垂線をそれぞれOL,OM,ONとし,
\[ \sqrt{3}\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+(2+\sqrt{3})\overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{0}} \]
が成立しているとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,次の問に答えよ.

(1)$\overrightarrow{c}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(3)$\angle \text{AOB}$および$\angle \text{ACB}$を求めよ.
(4)$\triangle$ABCの面積を求めよ.
香川大学 国立 香川大学 2011年 第1問
$\triangle$ABCの外接円の半径は1である.この外接円の中心Oから3つの辺BC,CA,ABへ下ろした垂線をそれぞれOL,OM,ONとし,
\[ \sqrt{3}\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+(2+\sqrt{3})\overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{0}} \]
が成立しているとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,次の問に答えよ.

(1)$\overrightarrow{c}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(3)$\angle \text{AOB}$および$\angle \text{ACB}$を求めよ.
(4)$\triangle$ABCの面積を求めよ.
香川大学 国立 香川大学 2011年 第1問
$\triangle$ABCの外接円の半径は1である.この外接円の中心Oから3つの辺BC,CA,ABへ下ろした垂線をそれぞれOL,OM,ONとし,
\[ \sqrt{3}\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+(2+\sqrt{3})\overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{0}} \]
が成立しているとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,次の問に答えよ.

(1)$\overrightarrow{c}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(3)$\angle \text{AOB}$および$\angle \text{ACB}$を求めよ.
(4)$\triangle$ABCの面積を求めよ.
三重大学 国立 三重大学 2011年 第2問
四面体OABCにおいて$\text{OA}=\text{OC}=\sqrt{2},\ \text{OB}=\sqrt{5},\ \text{AB}=3$であり,$\displaystyle \angle \text{AOC}=\angle \text{BOC}=\frac{\pi}{2}$であるとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{a} \cdot \overrightarrow{c},\ \overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分ABを$1:2$に内分する点をDとし,点Oから直線CDに引いた垂線と直線CDの交点をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また$|\overrightarrow{\mathrm{OH}}|$を求めよ.
三重大学 国立 三重大学 2011年 第3問
四面体OABCにおいて$\text{OA}=\text{OC}=\sqrt{2},\ \text{OB}=\sqrt{5},\ \text{AB}=3$であり,$\displaystyle \angle \text{AOC}=\angle \text{BOC}=\frac{\pi}{2}$であるとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{a} \cdot \overrightarrow{c},\ \overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分ABを$1:2$に内分する点をDとし,点Oから直線CDに引いた垂線と直線CDの交点をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また$|\overrightarrow{\mathrm{OH}}|$を求めよ.
三重大学 国立 三重大学 2011年 第3問
四面体OABCにおいて$\text{OA}=\text{OC}=\sqrt{2},\ \text{OB}=\sqrt{5},\ \text{AB}=3$であり,$\displaystyle \angle \text{AOC}=\angle \text{BOC}=\frac{\pi}{2}$であるとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{a} \cdot \overrightarrow{c},\ \overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分ABを$1:2$に内分する点をDとし,点Oから直線CDに引いた垂線と直線CDの交点をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また$|\overrightarrow{\mathrm{OH}}|$を求めよ.
岐阜大学 国立 岐阜大学 2011年 第3問
平面上に点Oを中心とする半径1の円$S$と$S$に内接する正三角形ABCがある.以下の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(3)平面上の任意の点Pに対して,以下の不等式が成り立つことを示せ.
\[ \text{AP}^2+\text{BP}^2+\text{CP}^2 \geqq 3 \]
また,等号が成り立つのはどのようなときか答えよ.
(4)円$S$の周上の任意の点Qに対して,
\[ (\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OQ}})^2+(\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OQ}})^2+(\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OQ}})^2=\frac{3}{2} \]
となることを示せ.
(5)円$S$の周上の任意の点Qに対して,
\[ \text{AQ}^4+\text{BQ}^4+\text{CQ}^4 \]
の値を求めよ.
スポンサーリンク

「内積」とは・・・

 まだこのタグの説明は執筆されていません。