タグ「内積」の検索結果

19ページ目:全250問中181問~190問を表示)
中央大学 私立 中央大学 2012年 第1問
次の問題文の空欄にもっとも適する答えを解答群から選び,その記号をマークせよ.ただし,同じ記号を$2$度以上用いてもよい.

$a,\ b,\ r,\ k$は$a>b>0$,$r>0$,$k>0$を満たす定数とする.
座標平面の相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が円$X^2+Y^2=r^2$の上を動くとき,$\triangle \mathrm{ABC}$の面積$S_1$の最大値は次のようにして求められる.まず,$2$点$\mathrm{B}$,$\mathrm{C}$を固定して点$\mathrm{A}$を動かすとき,その三角形の高さに注意すれば,面積が最大となるのは,$\mathrm{AB}=\mathrm{AC}$であるような二等辺三角形のときである.したがって,この円に内接する二等辺三角形のうちで面積が最大のものを見つければよい.そこで,$\mathrm{A}(0,\ r)$,$\mathrm{B}(-r \cos \theta,\ r \sin \theta)$,$\mathrm{C}(r \cos \theta,\ r \sin \theta)$ $\displaystyle \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$とすれば$S_1$の最大値は$\sin \theta=[ア]$のとき$S_1=[イ] r^2$であることがわかる.
点$\mathrm{P}(x,\ y)$の$y$座標を$k$倍した点を$\mathrm{P}^\prime(x,\ ky)$とおく.相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を$\mathrm{A}(x_1,\ y_1)$,$\mathrm{B}(x_2,\ y_2)$,$\mathrm{C}(x_3,\ y_3)$としたとき,$\triangle \mathrm{ABC}$の面積$S$は内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を用いて計算すると$[ウ]$と表される.したがって,点$\mathrm{A}^\prime(x_1,\ ky_1)$,$\mathrm{B}^\prime(x_2,\ ky_2)$,$\mathrm{C}^\prime(x_3,\ ky_3)$のなす三角形の面積を$S_2$とおくと,$S_2$は$S$の$[エ]$倍である.
点$\mathrm{P}(x,\ y)$は楕円$\displaystyle E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$の上を動く点とする.$\displaystyle k=\frac{a}{b}$であるとき,点$\mathrm{P}^\prime(x,\ ky)$は原点を中心とする半径$[オ]$の円上を動く.したがって,相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が楕円$E$上を動くとき,$\triangle \mathrm{ABC}$の面積の最大値は$a,\ b$を用いて$[カ]$と表される.

\begin{itemize}
ア,イの解答群
\[ \begin{array}{lllll}
\marua -\displaystyle\frac{1}{2} \phantom{AAA} & \marub -\displaystyle\frac{1}{3} \phantom{AAA} & \maruc \displaystyle\frac{1}{3} & \marud \displaystyle\frac{1}{2} \phantom{AAA} & \marue \displaystyle\frac{16}{9} \\ \\
\maruf -\displaystyle\frac{\sqrt{3}}{2} & \marug -\displaystyle\frac{\sqrt{3}}{3} & \maruh \displaystyle\frac{\sqrt{3}}{4} & \marui \displaystyle\frac{\sqrt{3}}{2} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \\ \\
\maruk \displaystyle\frac{8 \sqrt{2}}{9} & \marul \displaystyle\frac{2+\sqrt{3}}{4} & \marum \displaystyle\frac{\sqrt{2}(1+\sqrt{3})}{3} & &
\end{array} \]
ウの解答群

\mon[$\marua$] $\displaystyle |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$

\mon[$\marub$] $\displaystyle\frac{1}{2} |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$

\mon[$\maruc$] $\displaystyle |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$

\mon[$\marud$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$

\mon[$\marue$] $\displaystyle |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$

\mon[$\maruf$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$

\mon[$\marug$] $\displaystyle \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\}$

\mon[$\maruh$] $\displaystyle\frac{1}{2} \biggl[ \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\} \biggr]$

エの解答群
\[ \marua \frac{1}{k^3} \quad \marub \frac{1}{k^2} \quad \maruc \frac{1}{k} \quad \marud \frac{2}{k} \quad \marue \frac{k}{2} \quad \maruf k \quad \marug k^2 \quad \maruh k^3 \]
オの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{a}{2} \phantom{AAA} & \marub \displaystyle\frac{a^2}{4} \phantom{AAA} & \maruc a \phantom{AAA} & \marud a^2 \phantom{AAA} & \marue ab \\
\maruf \displaystyle\frac{b}{2} & \marug \displaystyle\frac{b^2}{4} & \maruh b & \marui b^2 & \maruj (ab)^2 \phantom{\frac{{[ ]}^2}{2}}
\end{array} \]
カの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{\sqrt{3}}{2}ab \phantom{AA} & \marub \displaystyle\frac{8 \sqrt{2}}{9} ab \phantom{AA} & \maruc \displaystyle\frac{\sqrt{3}}{4} ab \phantom{AA} & \marud \displaystyle\frac{16}{9}ab \phantom{AA} & \marue \displaystyle\frac{3 \sqrt{3}}{4} ab \\ \\
\maruf \displaystyle\frac{\sqrt{3}}{2} \frac{a^3}{b} & \marug \displaystyle\frac{8 \sqrt{2}}{9} \frac{a^3}{b} & \maruh \displaystyle\frac{\sqrt{3}}{4} \frac{a^3}{b} & \marui \displaystyle\frac{16}{9} \frac{a^3}{b} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \frac{a^3}{b}
\end{array} \]
\end{itemize}
大同大学 私立 大同大学 2012年 第3問
$\mathrm{A}(4,\ 3)$,$\mathrm{B}(8,\ 6)$,$\mathrm{P}(x,\ y)$とする.

(1)内積$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BP}}$を$x,\ y$で表せ.
(2)内積$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BP}}$の最小値を求めよ.
(3)$\mathrm{M}(0,\ 1)$,$\mathrm{N}(2,\ 7)$とする.点$\mathrm{P}$が線分$\mathrm{MN}$上を動くとき,内積$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BP}}$の最小値を求めよ.
青森公立大学 公立 青森公立大学 2012年 第2問
平面上のベクトル$\overrightarrow{x},\ \overrightarrow{y}$は大きさが等しく,互いに直交している.$\overrightarrow{a} = (7,\ 9)$とするとき,$2\overrightarrow{x}+\overrightarrow{y}=\overrightarrow{a}$が成り立つ.次の問いに答えよ.

(1)内積$\overrightarrow{a}\cdot \overrightarrow{x}$を内積$\overrightarrow{x}\cdot \overrightarrow{x}$を用いて表せ.
(2)内積$\overrightarrow{a}\cdot \overrightarrow{x}$,および内積$\overrightarrow{x}\cdot \overrightarrow{x}$の値を求めよ.
(3)ベクトル$\overrightarrow{x},\ \overrightarrow{y}$の成分をすべて求めよ.
愛知県立大学 公立 愛知県立大学 2012年 第2問
三角形ABCにおいて$\angle \text{A}=\theta,\ \angle \text{B}=2\theta$であるとする.このとき,以下の問いに答えよ.ただし,$\lceil \ \cdot \ \rfloor$はベクトルの内積を表す.

(1)$\displaystyle \frac{|\overrightarrow{\mathrm{AC}}|}{|\overrightarrow{\mathrm{BC}}|}$を,$\cos \theta$を用いて表せ.
(2)次式が最大となるときの$\cos \theta$を求めよ.
\[ \frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AC}}|}+\frac{\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}}{|\overrightarrow{\mathrm{BA}}||\overrightarrow{\mathrm{BC}}|}+\frac{\overrightarrow{\mathrm{CB}} \cdot \overrightarrow{\mathrm{CA}}}{|\overrightarrow{\mathrm{CB}}||\overrightarrow{\mathrm{CA}}|} \]
(3)$\angle \text{B}$の二等分線と辺ACとの交点をDとしたとき,次式を満たす$\theta$を求めよ.
\[ \frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AC}}|}+\frac{\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}}{|\overrightarrow{\mathrm{BA}}||\overrightarrow{\mathrm{BC}}|}+\frac{\overrightarrow{\mathrm{CB}} \cdot \overrightarrow{\mathrm{CA}}}{|\overrightarrow{\mathrm{CB}}||\overrightarrow{\mathrm{CA}}|} = \frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AD}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AD}}|}+\frac{\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BD}}}{|\overrightarrow{\mathrm{BA}}||\overrightarrow{\mathrm{BD}}|}+\frac{\overrightarrow{\mathrm{DB}} \cdot \overrightarrow{\mathrm{DA}}}{|\overrightarrow{\mathrm{DB}}||\overrightarrow{\mathrm{DA}}|} \]
広島市立大学 公立 広島市立大学 2012年 第3問
空間内に4点O,A,B,Cがあり,次の条件を満たすものとする.
\[ \text{OA}=1,\ \text{OB}=1,\ \text{OC}=2,\ \angle \text{AOB}=\frac{\pi}{2},\ \angle \text{BOC}=\frac{\pi}{3},\ \angle \text{COA}=\frac{\pi}{4} \]
また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,Pは平面OAB上の点で$\overrightarrow{\mathrm{OP}}=x \overrightarrow{a}+y \overrightarrow{b}$と表されているとする.点Pが$|\overrightarrow{\mathrm{OP}}|=1$を満たして動くとき,以下の問いに答えよ.

(1)点Cから平面OABに下ろした垂線と平面OABの交点をQとする.したがって,$\text{CQ} \perp \text{OA},\ \text{CQ} \perp \text{OB}$である.$\overrightarrow{\mathrm{OQ}}=u \overrightarrow{a}+v \overrightarrow{b}$と表したとき,$u,\ v$を求めよ.
(2)$(ⅰ)$ \ 内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OC}}$の最大値と最小値を求めよ.また,最大値をとるときの$x,\ y$の値,最小値をとるときの$x,\ y$の値をそれぞれ求めよ.\\
$(ⅱ)$ \ $\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OC}}$のなす角$\theta$がとりうる値の範囲を求めよ.ただし,$0 \leqq \theta \leqq \pi$とする.
(3)内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OC}}$が最大値,最小値をとるときの点PをそれぞれP$_1$,P$_2$とおく.点P$_1$,P$_2$はいずれも直線OQ上にあることを示せ.ただし,Qは(1)で定めた点とする.
兵庫県立大学 公立 兵庫県立大学 2012年 第4問
$xy$平面上の点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$,$\mathrm{P}(x,\ y)$に対して,ベクトル$\overrightarrow{a}$,$\overrightarrow{b}$を各々$\overrightarrow{a}=\overrightarrow{\mathrm{AP}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{BP}}$と定める.次の問に答えなさい.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$x,\ y$を用いて表しなさい.

(2)$\displaystyle \frac{x^2+y^2-1}{\sqrt{(x-1)^2+y^2}\sqrt{(x+1)^2+y^2}}=\frac{1}{\sqrt{2}}$を満たす点$(x,\ y)$全体の集合を図示しなさい.
横浜市立大学 公立 横浜市立大学 2012年 第2問
座標空間に,一辺の長さが$a$の正四面体$\mathrm{ABCD}$がある.辺$\mathrm{AB}$,$\mathrm{CD}$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$を
\[ \mathrm{AP}=\mathrm{CQ}=ta (0<t<1) \]
となるようにとる.以下の問いに答えよ.
(図は省略)

(1)ベクトル$\overrightarrow{\mathrm{BA}}$と$\overrightarrow{\mathrm{BQ}}$の内積を求めよ.
(2)ベクトル$\overrightarrow{\mathrm{QA}}$と$\overrightarrow{\mathrm{QB}}$の内積を求めよ.
(3)ベクトル$\overrightarrow{\mathrm{QP}}$の長さを求めよ.
大阪大学 国立 大阪大学 2011年 第3問
$a,\ b,\ c$を実数とする.ベクトル$\overrightarrow{v_1}=(3,\ 0),\ \overrightarrow{v_2}=(1,\ 2\sqrt{2})$をとり,$\overrightarrow{v_3}=a\overrightarrow{v_1}+b\overrightarrow{v_2}$とおく.座標平面上のベクトル$\overrightarrow{p}$に対する条件
\[ (*) \qquad (\overrightarrow{v_1}\cdot \overrightarrow{p})\overrightarrow{v_1}+(\overrightarrow{v_2}\cdot \overrightarrow{p})\overrightarrow{v_2}+(\overrightarrow{v_3}\cdot \overrightarrow{p})\overrightarrow{v_3} = c\overrightarrow{p} \]
を考える.ここで$\overrightarrow{v_i}\cdot \overrightarrow{p} \ (i=1,\ 2,\ 3)$はベクトル$\overrightarrow{v_i}$とベクトル$\overrightarrow{p}$の内積を表す.このとき以下の問いに答えよ.

(1)座標平面上の任意のベクトル$\overrightarrow{v}=(x,\ y)$が,実数$s,\ t$を用いて$\overrightarrow{v}=s\overrightarrow{v_1}+t\overrightarrow{v_2}$と表されることを,$s$および$t$の各々を$x,\ y$の式で表すことによって示せ.
(2)$\overrightarrow{p}=\overrightarrow{v_1}$と$\overrightarrow{p}=\overrightarrow{v_2}$の両方が条件$(*)$をみたすならば,座標平面上のすべてのベクトル$\overrightarrow{v}$こ対して,$\overrightarrow{p}=\overrightarrow{v}$が条件$(*)$をみたすことを示せ.
(3)座標平面上のすべてのベクトル$\overrightarrow{v}$に対して,$\overrightarrow{p}=\overrightarrow{v}$が条件$(*)$をみたす.このような実数の組$(a,\ b,\ c)$をすべて求めよ.
秋田大学 国立 秋田大学 2011年 第3問
点$\mathrm{O}$を中心とし,半径が$r$である円に内接する$\triangle \mathrm{ABC}$について,$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$をそれぞれ$2:1$に内分する点を$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)$r$と内積$\overrightarrow{a}\cdot \overrightarrow{b}$を用いて$|\overrightarrow{\mathrm{OA^\prime}}|^2$を表せ.
(2)$3$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$を通る円の中心が点$\mathrm{O}$と一致するとき,$\triangle \mathrm{ABC}$が正三角形であることを示せ.
秋田大学 国立 秋田大学 2011年 第3問
平面上の相異なる3点O,A,Bに対して,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,$\displaystyle \overrightarrow{p}=\overrightarrow{a}+2\overrightarrow{b},\ \overrightarrow{q}=\frac{-\overrightarrow{a}+2\overrightarrow{b}}{4}$とする.また,$\overrightarrow{p}=\overrightarrow{\mathrm{OP}},\ \overrightarrow{q}=\overrightarrow{\mathrm{OQ}}$であるような2点P,Qをとる.$|\overrightarrow{p}|=4,\ |\overrightarrow{q}|=1$であるとき,次の問いに答えよ.

(1)$|\overrightarrow{a}|=|\overrightarrow{b}|$のとき,内積$\overrightarrow{p} \cdot \overrightarrow{q}$を求めよ.
(2)2点A,Bを通る直線と,2点P,Qを通る直線が直交するとき,内積$\overrightarrow{p} \cdot \overrightarrow{q}$を求めよ.
(3)$\triangle$OABの面積が最大になるとき,$\overrightarrow{p}$と$\overrightarrow{q}$のなす角$\theta$を求めよ.
スポンサーリンク

「内積」とは・・・

 まだこのタグの説明は執筆されていません。