タグ「内積」の検索結果

17ページ目:全250問中161問~170問を表示)
秋田大学 国立 秋田大学 2012年 第2問
平面上のベクトル$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$が,$|\overrightarrow{\mathrm{OA}}|=3,\ |\overrightarrow{\mathrm{OB}}|=6,\ |\overrightarrow{\mathrm{OC}}|=2$と
\[ \overrightarrow{\mathrm{OB}}=\frac{4}{3}\overrightarrow{\mathrm{OA}}+\frac{3}{2}\overrightarrow{\mathrm{OC}} \]
を満たす.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}$を求めよ.
(2)ABを$2:1$に内分する点をPとするとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OC}}$で表せ.
(3)$|\overrightarrow{\mathrm{OP}}|$を求めよ.
(4)点Qが
\[ \overrightarrow{\mathrm{OQ}}=\frac{5}{6}\overrightarrow{\mathrm{OA}}+\frac{17}{16}\overrightarrow{\mathrm{OC}} \]
を満たすとき,Qが四角形OABCの内部にあることを示せ.
宮崎大学 国立 宮崎大学 2012年 第3問
四面体OABCにおいて,
\[ \text{OA}=\text{OC}=4, \text{OB}=3, \angle \text{AOB}=\angle \text{BOC}=\angle \text{COA}=60^\circ \]
とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の各問に答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$の値を求めよ.
(2)平面ABC上の点Dを,直線ODが平面ABCに垂直に交わるようにとる.$\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}}+q\overrightarrow{\mathrm{AC}}$とおくとき,$p$と$q$の値を求めよ.
(3)四面体OABCの体積を求めよ.
宮崎大学 国立 宮崎大学 2012年 第2問
四面体OABCにおいて,
\[ \text{OA}=\text{OC}=4, \text{OB}=3, \angle \text{AOB}=\angle \text{BOC}=\angle \text{COA}=60^\circ \]
とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の各問に答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$の値を求めよ.
(2)平面ABC上の点Dを,直線ODが平面ABCに垂直に交わるようにとる.$\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}}+q\overrightarrow{\mathrm{AC}}$とおくとき,$p$と$q$の値を求めよ.
(3)四面体OABCの体積を求めよ.
宮崎大学 国立 宮崎大学 2012年 第2問
四面体OABCにおいて,
\[ \text{OA}=\text{OC}=4, \text{OB}=3, \angle \text{AOB}=\angle \text{BOC}=\angle \text{COA}=60^\circ \]
とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の各問に答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$の値を求めよ.
(2)平面ABC上の点Dを,直線ODが平面ABCに垂直に交わるようにとる.$\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}}+q\overrightarrow{\mathrm{AC}}$とおくとき,$p$と$q$の値を求めよ.
(3)四面体OABCの体積を求めよ.
鹿児島大学 国立 鹿児島大学 2012年 第3問
平面上に互いに異なる3点O,A,Bがあり,それらは同一直線上にはないものとする.$\text{OA}=2,\ \text{OB}=3$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,その内積を$\overrightarrow{a} \cdot \overrightarrow{b}=t$とおく.$\angle \text{AOB}$の二等分線と線分ABとの交点をCとし,直線OAに関して点Bと対称な点をDとする.このとき,次の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OD}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{OD}}$となるとき,$\angle \text{AOB}$とOCを求めよ.
鹿児島大学 国立 鹿児島大学 2012年 第3問
平面上に互いに異なる3点O,A,Bがあり,それらは同一直線上にはないものとする.$\text{OA}=2,\ \text{OB}=3$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,その内積を$\overrightarrow{a} \cdot \overrightarrow{b}=t$とおく.$\angle \text{AOB}$の二等分線と線分ABとの交点をCとし,直線OAに関して点Bと対称な点をDとする.このとき,次の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OD}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{OD}}$となるとき,$\angle \text{AOB}$とOCを求めよ.
鹿児島大学 国立 鹿児島大学 2012年 第2問
平面上に互いに異なる3点O,A,Bがあり,それらは同一直線上にはないものとする.$\text{OA}=2,\ \text{OB}=3$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,その内積を$\overrightarrow{a} \cdot \overrightarrow{b}=t$とおく.$\angle \text{AOB}$の二等分線と線分ABとの交点をCとし,直線OAに関して点Bと対称な点をDとする.このとき,次の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OD}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{OD}}$となるとき,$\angle \text{AOB}$とOCを求めよ.
室蘭工業大学 国立 室蘭工業大学 2012年 第4問
平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は同一直線上にないものとし,$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{AC}}|=1$とする.また,$t$を正の実数とし,平面上の点$\mathrm{P}$を$\overrightarrow{\mathrm{AP}}=\overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$と定め,線分$\mathrm{AP}$と$\mathrm{BC}$の交点を$\mathrm{Q}$とする.

(1)$\overrightarrow{\mathrm{AQ}}$を$t$および$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$を用いて表せ.
(2)三角形$\mathrm{ABP}$の面積を$t$と内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AC}} \perp \overrightarrow{\mathrm{CP}}$かつ点$\mathrm{Q}$が線分$\mathrm{BC}$を$1:2$に内分するとき,三角形$\mathrm{BPQ}$の面積を求めよ.
福井大学 国立 福井大学 2012年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{2}$,$\mathrm{OC}=1$であり,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{AOC}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{BOC}=\frac{\pi}{4}$であるとする.また,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$,平面$\alpha$に関して$\mathrm{C}$と対称な点を$\mathrm{K}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{b} \cdot \overrightarrow{c},\ \overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(2)$\overrightarrow{\mathrm{OH}},\ \overrightarrow{\mathrm{OK}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,平面$\alpha$上の点$\mathrm{P}$で$\mathrm{GP}+\mathrm{PC}$を最小にする点を$\mathrm{P}_0$とする.このとき,$\overrightarrow{\mathrm{OP}}_0$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.また,点$\mathrm{P}_0$は$\triangle \mathrm{OAB}$の周または内部にあることを示せ.
山形大学 国立 山形大学 2012年 第1問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
スポンサーリンク

「内積」とは・・・

 まだこのタグの説明は執筆されていません。