タグ「内積」の検索結果

15ページ目:全250問中141問~150問を表示)
愛知工業大学 私立 愛知工業大学 2013年 第1問
次の$[ ]$を適当に補え.

(1)$\displaystyle \frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}+\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}=[ ]$,$\displaystyle \left( \frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}} \right)^2+\left( \frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}} \right)^2=[ ]$である.

(2)$10$本のくじの中に$2$本の当たりくじがある.このくじを$\mathrm{A}$君が$2$本引き,次に$\mathrm{B}$さんが$2$本引く.ただし,引いたくじはもとに戻さないとする.このとき,$\mathrm{A}$君が$1$本も当たらない確率は$[ ]$である.また,$\mathrm{B}$さんが少なくとも$1$本当たる確率は$[ ]$である.
(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{AB}$の中点を$\mathrm{P}$,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{Q}$とする.このとき,$\overrightarrow{\mathrm{OP}}$と$\mathrm{OQ}$の内積は$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}=[ ]$である.また,$\triangle \mathrm{OPQ}$の面積は$[ ]$である.
(4)複素数$z=x+yi$($x,\ y$は実数,$i$は虚数単位)に対して,$|z|=\sqrt{x^2+y^2}$とする.このとき,$|z|=1$と$|z-i|=1$を同時にみたす複素数$z$は$z=[ ]$である.
(5)$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\displaystyle \frac{1}{\sin \theta}+\frac{1}{\cos \theta}=2 \sqrt{6}$のとき,$\sin \theta \cos \theta=[ ]$であり,$\theta=[ ]$である.
(6)$\displaystyle \int_0^{\frac{\pi}{4}} x \sin 3x \, dx=[ ]$
東京電機大学 私立 東京電機大学 2013年 第2問
$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\sqrt{5}$,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2$である四面体$\mathrm{OABC}$を考える.$\mathrm{AB}$の中点を$\mathrm{M}$とし,$\mathrm{M}$から$\mathrm{OC}$に下ろした垂線と$\mathrm{OC}$の交点を$\mathrm{N}$とする.$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,$\mathrm{OG}$と$\mathrm{MN}$の交点を$\mathrm{P}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として,次の問に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{c}$と$\overrightarrow{b} \cdot \overrightarrow{c}$の値を求めよ.
(2)$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)四面体$\mathrm{PABG}$の体積は四面体$\mathrm{OABC}$の体積の何倍かを求めよ.
東京電機大学 私立 東京電機大学 2013年 第5問
$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\sqrt{5}$,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2$である四面体$\mathrm{OABC}$を考える.$\mathrm{AB}$の中点を$\mathrm{M}$とし,$\mathrm{M}$から$\mathrm{OC}$に下ろした垂線と$\mathrm{OC}$の交点を$\mathrm{N}$とする.$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,$\mathrm{OG}$と$\mathrm{MN}$の交点を$\mathrm{P}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として,次の問に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{c}$と$\overrightarrow{b} \cdot \overrightarrow{c}$の値を求めよ.
(2)$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)四面体$\mathrm{PABG}$の体積は四面体$\mathrm{OABC}$の体積の何倍かを求めよ.
北里大学 私立 北里大学 2013年 第3問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{D}$,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{E}$,辺$\mathrm{AB}$を$3:1$に内分する点を$\mathrm{F}$とし,三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.また,辺$\mathrm{AO}$の点$\mathrm{O}$を越える延長上に$3 \overrightarrow{\mathrm{AO}}=\overrightarrow{\mathrm{AH}}$となるように点$\mathrm{H}$をとり,直線$\mathrm{HF}$と平面$\mathrm{DEG}$の交点を$\mathrm{L}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.

(1)$\overrightarrow{\mathrm{DE}}$と$\overrightarrow{\mathrm{DG}}$の内積は$[コ]$である.
(2)$\overrightarrow{\mathrm{HF}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\overrightarrow{\mathrm{HF}}=[サ] \overrightarrow{a}+[シ] \overrightarrow{b}$と表される.
(3)$\overrightarrow{\mathrm{LF}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\overrightarrow{\mathrm{LF}}=[ス] \overrightarrow{a}+[セ] \overrightarrow{b}$と表される.
北里大学 私立 北里大学 2013年 第1問
次の各文の$[ ]$にあてはまる答を求めよ.

(1)$\mathrm{AB}=4$,$\mathrm{AD}=3$である四角形$\mathrm{ABCD}$において,$2$本の対角線の交点$\mathrm{E}$は線分$\mathrm{BD}$を$3:2$に内分し,線分$\mathrm{AC}$を$1:4$に内分しているとする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$とおく.このとき,ベクトル$\overrightarrow{\mathrm{AC}}$は$\overrightarrow{\mathrm{AC}}=[ア] \overrightarrow{b}+[イ] \overrightarrow{d}$と表せる.さらに,線分$\mathrm{AC}$と線分$\mathrm{BD}$が垂直に交わるとき,内積$\overrightarrow{b} \cdot \overrightarrow{d}$の値は$[ウ]$であり,四角形$\mathrm{ABCD}$の面積は$[エ]$である.
(2)$6$人の生徒$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$,$\mathrm{d}$,$\mathrm{e}$,$\mathrm{f}$を$3$つの部屋$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$に入れる.各部屋は$6$人まで入れることができる.このとき,空室があってもよいとして,$3$つの部屋への生徒の入れ方は全部で$[オ]$通りある.また,各部屋に$2$人ずつ入るような生徒の入れ方は全部で$[カ]$通りあり,空室ができないような生徒の入れ方は全部で$[キ]$通りある.
(3)$x$の関数$f(x)$を$\displaystyle f(x)=\int_1^{2x} |t(t-x)| \, dt$により定める.このとき,$f(x) \geqq 0$となるための$x$の条件は$[ク]$である.また,$f(1)$の値は$f(1)=[ケ]$であり,$x>1$のときの$f(x)$を求めると$f(x)=[コ]$である.
(4)三角形$\mathrm{ABC}$の内心を$\mathrm{I}$とし,三角形$\mathrm{ABC}$の外接円と直線$\mathrm{AI}$との交点で$\mathrm{A}$以外のものを$\mathrm{D}$とする.$\mathrm{AB}=2$,$\mathrm{AC}=3$,$\mathrm{AD}=4$のとき,$\cos \angle \mathrm{BAD}=[サ]$であり,$\mathrm{BD}=[シ]$,$\mathrm{CD}=[ス]$,$\mathrm{BC}=[セ]$である.
東京薬科大学 私立 東京薬科大学 2013年 第4問
$\mathrm{AB}=2$,$\mathrm{BC}=\sqrt{3}$である長方形の紙$\mathrm{ABCD}$が平らな机上に置かれている.$\mathrm{M}$を$\mathrm{AB}$の中点とすると,$\angle \mathrm{MCB}={[あい]}^\circ$である.いま,ある直線$\ell$に沿ってこの紙を折り曲げて,頂点$\mathrm{C}$が$\mathrm{M}$に重なるようにする.$\ell$と辺$\mathrm{BC}$との交点を$\mathrm{E}$とすると,$\mathrm{CE}$の長さは$\displaystyle \frac{[う] \sqrt{[え]}}{[お]}$である.次に,折り畳まれた紙を開き,折り曲げられた部分が机上に垂直になったところで止める(頂点$\mathrm{C}$は空中にある).このとき,$\mathrm{AC}=[か]$,$\mathrm{BC}=\sqrt{[き]}$,内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[く]$となる.
同志社大学 私立 同志社大学 2013年 第2問
$\mathrm{O}$を原点とする座標平面に点$\mathrm{A}(2,\ 1)$と点$\mathrm{B}(1,\ -2)$をとる.実数$\theta (0 \leqq \theta<2\pi)$に対して点$\mathrm{P}$は$\overrightarrow{\mathrm{OP}}=(\cos \theta) \overrightarrow{\mathrm{OA}}+(1-\sin \theta) \overrightarrow{\mathrm{OB}}$を満たすものとする.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を求めよ.
(2)$\theta$が$0 \leqq \theta<2\pi$を満たす値をとって変化するとき,点$\mathrm{P}$の軌跡を求めよ.
(3)内積$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}$の最大値と,そのときの$\theta$の値を求めよ.
近畿大学 私立 近畿大学 2013年 第2問
空間内の同一平面上にない$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が,$|\overrightarrow{\mathrm{OA}}|=2$,$|\overrightarrow{\mathrm{OB}}|=3$,$|\overrightarrow{\mathrm{OC}}|=4$,$|\overrightarrow{\mathrm{AB}}|=4$,$|\overrightarrow{\mathrm{BC}}|=6$,$|\overrightarrow{\mathrm{CA}}|=5$を満たしているとする.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値は$\displaystyle \frac{[アイ]}{[ウ]}$,内積$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}$の値は$\displaystyle \frac{[エオカ]}{[キ]}$,内積$\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}$の値は$\displaystyle \frac{[クケ]}{[コ]}$である.
(2)線分$\mathrm{OA}$の中点を$\mathrm{L}$,線分$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{M}$,線分$\mathrm{OC}$を$3:1$に内分する点を$\mathrm{N}$とする.$\triangle \mathrm{LMN}$の重心を$\mathrm{P}$とし,直線$\mathrm{OP}$と平面$\mathrm{ABC}$との交点を$\mathrm{Q}$とする.このとき,
\[ \overrightarrow{\mathrm{OP}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{OA}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{OB}}+\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{OC}} \]
であり,したがって
\[ |\overrightarrow{\mathrm{OP}}|=\frac{\sqrt{[チツ]}}{[テ]} \]
となる.また,
\[ \frac{|\overrightarrow{\mathrm{OP}}|}{|\overrightarrow{\mathrm{PQ}}|}=\frac{[トナ]}{[ニヌ]} \]
である.
近畿大学 私立 近畿大学 2013年 第2問
空間内の同一平面上にない$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が,$|\overrightarrow{\mathrm{OA}}|=2$,$|\overrightarrow{\mathrm{OB}}|=3$,$|\overrightarrow{\mathrm{OC}}|=4$,$|\overrightarrow{\mathrm{AB}}|=4$,$|\overrightarrow{\mathrm{BC}}|=6$,$|\overrightarrow{\mathrm{CA}}|=5$を満たしているとする.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値は$\displaystyle \frac{[アイ]}{[ウ]}$,内積$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}$の値は$\displaystyle \frac{[エオカ]}{[キ]}$,内積$\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}$の値は$\displaystyle \frac{[クケ]}{[コ]}$である.
(2)線分$\mathrm{OA}$の中点を$\mathrm{L}$,線分$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{M}$,線分$\mathrm{OC}$を$3:1$に内分する点を$\mathrm{N}$とする.$\triangle \mathrm{LMN}$の重心を$\mathrm{P}$とし,直線$\mathrm{OP}$と平面$\mathrm{ABC}$との交点を$\mathrm{Q}$とする.このとき,
\[ \overrightarrow{\mathrm{OP}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{OA}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{OB}}+\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{OC}} \]
であり,したがって
\[ |\overrightarrow{\mathrm{OP}}|=\frac{\sqrt{[チツ]}}{[テ]} \]
となる.また,
\[ \frac{|\overrightarrow{\mathrm{OP}}|}{|\overrightarrow{\mathrm{PQ}}|}=\frac{[トナ]}{[ニヌ]} \]
である.
東京医科大学 私立 東京医科大学 2013年 第3問
座標平面上の楕円$\displaystyle C:\frac{(x-a)^2}{b}+\frac{(y-c)^2}{2}=1$($a,\ b,\ c$は正の定数)は$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(0,\ 2)$を通るとする.

(1)定数$a,\ b,\ c$は$a=[ア]$,$b=[イ]$,$c=[ウ]$である.
(2)点$\mathrm{P}$が楕円$C$上を動くとき,内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AP}}$の最大値を$M$とすれば$\displaystyle M=\frac{[エオ]}{[カ]}$である.
スポンサーリンク

「内積」とは・・・

 まだこのタグの説明は執筆されていません。