タグ「内積」の検索結果

12ページ目:全250問中111問~120問を表示)
福島県立医科大学 公立 福島県立医科大学 2014年 第2問
$\mathrm{OA}=\mathrm{OB}=1$,$\displaystyle \angle \mathrm{AOB}<\frac{\pi}{2}$の$\triangle \mathrm{OAB}$を含む平面を$H$とする.平面$H$上に無い点$\mathrm{C}$から平面$H$,直線$\mathrm{OA}$,直線$\mathrm{OB}$に下ろした垂線の足をそれぞれ$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$,$p=\overrightarrow{a} \cdot \overrightarrow{b}$,$q=\overrightarrow{b} \cdot \overrightarrow{c}$,$r=\overrightarrow{c} \cdot \overrightarrow{a}$として,以下の問いに答えよ.ただし,$\overrightarrow{a} \cdot \overrightarrow{b}$は$\overrightarrow{a}$と$\overrightarrow{b}$の内積である.

(1)$\overrightarrow{a} \cdot \overrightarrow{\mathrm{DE}}=0$であることを示せ.
(2)$\overrightarrow{\mathrm{OE}}$と$\overrightarrow{\mathrm{OF}}$をそれぞれ$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$p,\ q,\ r$で表せ.
(3)$\mathrm{EF}$の長さを$p,\ q,\ r$で表せ.
(4)$\displaystyle p=\frac{1}{5}$,$q=1$,$r=2$であるとき,$\mathrm{OD}$の長さを求めよ.
広島市立大学 公立 広島市立大学 2014年 第3問
四面体$\mathrm{OABC}$は,$\mathrm{OA}=\mathrm{BC}$,$\mathrm{OB}=\mathrm{AC}$,$\mathrm{OC}=\mathrm{AB}$を満たしているとし,$\mathrm{OA}=a$,$\mathrm{OB}=b$,$\mathrm{OC}=c$とおく.三角形$\mathrm{ABC}$と三角形$\mathrm{OAC}$の重心をそれぞれ$\mathrm{G}$,$\mathrm{H}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OG}}$,$\overrightarrow{\mathrm{BH}}$をそれぞれ$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(2)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を$a,\ b,\ c$を用いて表せ.
(3)$\mathrm{OG} \perp \mathrm{BH}$であるとき,$a^2+c^2=3b^2$が成り立つことを示せ.
九州大学 国立 九州大学 2013年 第2問
一辺の長さが1の正方形$\mathrm{OABC}$を底面とし,点$\mathrm{P}$を頂点とする四角錐$\mathrm{POABC}$がある.ただし,点$\mathrm{P}$は内積に関する条件$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}=\frac{1}{4}$,および$\displaystyle \overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OP}}=\frac{1}{2}$をみたす.辺$\mathrm{AP}$を$2:1$に内分する点を$\mathrm{M}$とし,辺$\mathrm{CP}$の中点を$\mathrm{N}$とする.さらに,点$\mathrm{P}$と直線$\mathrm{BC}$上の点$\mathrm{Q}$を通る直線$\mathrm{PQ}$は,平面$\mathrm{OMN}$に垂直であるとする.このとき,長さの比$\mathrm{BQ}:\mathrm{QC}$,および線分$\mathrm{OP}$の長さを求めよ.
新潟大学 国立 新潟大学 2013年 第4問
1次関数$f(x)=px+q$に対して,$x$の係数$p$と定数項$q$を成分にもつベクトル$(p,\ q)$を$\overrightarrow{f}$とする.つまり,$\overrightarrow{f}=(p,\ q)$とする.次の問いに答えよ.

(1)定積分
\[ \int_{-\sqrt{3}}^{\sqrt{3}} (kx+l)(mx+n) \, dx \]
を求めよ.ただし,$k,\ l,\ m,\ n$は定数である.
(2)2つの1次関数$g(x)$と$h(x)$に対して,等式
\[ \frac{1}{2 \sqrt{3}} \int_{-\sqrt{3}}^{\sqrt{3}} g(x)h(x) \, dx=\overrightarrow{g} \cdot \overrightarrow{h} \]
が成り立つことを示せ.ただし,$\overrightarrow{g} \cdot \overrightarrow{h}$はベクトル$\overrightarrow{g}$,$\overrightarrow{h}$の内積を表す.
(3)等式
\[ \int_{-\sqrt{3}}^{\sqrt{3}} (2x+1)^2 \, dx \int_{-\sqrt{3}}^{\sqrt{3}} \{g(x)\}^2 \, dx=\left\{ \int_{-\sqrt{3}}^{\sqrt{3}} (2x+1)g(x) \, dx \right\}^2 \]
を満たし,$g(0)=-2$であるような1次関数$g(x)$を求めよ.
九州大学 国立 九州大学 2013年 第1問
一辺の長さが1の正方形$\mathrm{OABC}$を底面とし,$\mathrm{OP}=\mathrm{AP}=\mathrm{BP}=\mathrm{CP}$をみたす点$\mathrm{P}$を頂点とする四角錐$\mathrm{POABC}$がある.辺$\mathrm{AP}$を$1:3$に内分する点を$\mathrm{D}$,辺$\mathrm{CP}$の中点を$\mathrm{E}$,辺$\mathrm{BC}$を$t:(1-t)$に内分する点を$\mathrm{Q}$とする.このとき,以下の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OD}}$と$\overrightarrow{\mathrm{OE}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OP}}$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{PQ}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OP}}$と$t$を用いて表せ.
(3)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}$の値を求めよ.
(4)直線$\mathrm{PQ}$が平面$\mathrm{ODE}$に垂直であるとき,$t$の値および線分$\mathrm{OP}$の長さを求めよ.
岩手大学 国立 岩手大学 2013年 第4問
平面上の一直線上にない$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を考える.線分$\mathrm{PQ}$の中点を$\mathrm{A}$とし,$\mathrm{O}$を端点とし$\mathrm{A}$の方向に伸びた半直線$\mathrm{OA}$上の点を$\mathrm{B}$とする.点$\mathrm{B}$が$|\overrightarrow{\mathrm{OA}}| |\overrightarrow{\mathrm{OB}}|=1$を満たすとき,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OA}}$を$\overrightarrow{\mathrm{OP}}$および$\overrightarrow{\mathrm{OQ}}$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OB}}$を$\overrightarrow{\mathrm{OP}}$および$\overrightarrow{\mathrm{OQ}}$を用いて表せ.
(3)$|\overrightarrow{\mathrm{OP}}|=|\overrightarrow{\mathrm{OQ}}|=1$のとき,$\overrightarrow{\mathrm{BP}}$と$\overrightarrow{\mathrm{OP}}$の内積を求めよ.
岩手大学 国立 岩手大学 2013年 第4問
平面上の一直線上にない$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を考える.線分$\mathrm{PQ}$の中点を$\mathrm{A}$とし,$\mathrm{O}$を端点とし$\mathrm{A}$の方向に伸びた半直線$\mathrm{OA}$上の点を$\mathrm{B}$とする.点$\mathrm{B}$が$|\overrightarrow{\mathrm{OA}}| |\overrightarrow{\mathrm{OB}}|=1$を満たすとき,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OA}}$を$\overrightarrow{\mathrm{OP}}$および$\overrightarrow{\mathrm{OQ}}$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OB}}$を$\overrightarrow{\mathrm{OP}}$および$\overrightarrow{\mathrm{OQ}}$を用いて表せ.
(3)$|\overrightarrow{\mathrm{OP}}|=|\overrightarrow{\mathrm{OQ}}|=1$のとき,$\overrightarrow{\mathrm{BP}}$と$\overrightarrow{\mathrm{OP}}$の内積を求めよ.
秋田大学 国立 秋田大学 2013年 第2問
$\triangle \mathrm{OAB}$において,辺$\mathrm{AB}$上に$t \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{AC}} \ (0<t<1)$となる点$\mathrm{C}$をとる.$\mathrm{OA}=1$,$\mathrm{OB}=2$,$\mathrm{OC}=1$のとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$および$t$を用いて表せ.
(2)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を$t$を用いて表せ.
(3)$\mathrm{AC}=1$のとき,$t$の値を求めよ.
佐賀大学 国立 佐賀大学 2013年 第1問
一辺の長さが$2$の正三角形$\mathrm{OAB}$において,線分$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:1$に内分する点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問に答えよ.

(1)$\overrightarrow{a},\ \overrightarrow{b}$の内積$\overrightarrow{a} \cdot \overrightarrow{b}$の値を求めよ.
(2)$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)線分$\mathrm{PQ}$の長さを求めよ.
(4)線分$\mathrm{OB}$の中点を$\mathrm{C}$とし,線分$\mathrm{AC}$と線分$\mathrm{PQ}$の交点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
佐賀大学 国立 佐賀大学 2013年 第5問
一辺の長さが$2$の正三角形$\mathrm{OAB}$において,線分$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:1$に内分する点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問に答えよ.

(1)$\overrightarrow{a},\ \overrightarrow{b}$の内積$\overrightarrow{a} \cdot \overrightarrow{b}$の値を求めよ.
(2)$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)線分$\mathrm{PQ}$の長さを求めよ.
(4)線分$\mathrm{OB}$の中点を$\mathrm{C}$とし,線分$\mathrm{AC}$と線分$\mathrm{PQ}$の交点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
スポンサーリンク

「内積」とは・・・

 まだこのタグの説明は執筆されていません。