タグ「内積」の検索結果

10ページ目:全250問中91問~100問を表示)
宮城教育大学 国立 宮城教育大学 2014年 第3問
辺の長さが$\mathrm{OA}=1$,$\mathrm{OB}=2$,$\mathrm{OC}=3$である四面体$\mathrm{OABC}$において,$\mathrm{OA} \perp \mathrm{AB}$,$\mathrm{OA} \perp \mathrm{AC}$とする.辺$\mathrm{OA}$の中点を$\mathrm{D}$とし,辺$\mathrm{OB}$を$1:3$に内分する点を$\mathrm{E}$,辺$\mathrm{OC}$を$1:8$に内分する点を$\mathrm{F}$とする.$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$を通る平面上の点$\mathrm{G}$が,$\mathrm{EG} \perp \mathrm{DE}$,$\mathrm{FG} \perp \mathrm{DF}$をみたすとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{a} \cdot \overrightarrow{c}$の値をそれぞれ求めよ.
(2)$\overrightarrow{b} \cdot \overrightarrow{c}=t$とおくとき,$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$t$を用いて表せ.
(3)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と直線$\mathrm{OG}$が点$\mathrm{H}$で交わるとする.直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{I}$とするとき,$\mathrm{BI}:\mathrm{IC}$を求めよ.
高知大学 国立 高知大学 2014年 第2問
$1$辺の長さが$1$の正六角形$\mathrm{ABCDEF}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AF}}=\overrightarrow{b}$とする.線分$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{G}$とおき,正の実数$t$に対して$\mathrm{DE}$を$t:1$に内分する点を$\mathrm{H}$とおく.このとき,次の問いに答えよ.

(1)$\overrightarrow{a}$と$\overrightarrow{b}$の内積を求めよ.
(2)$\overrightarrow{\mathrm{FG}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ t$を用いて表せ.
(4)$\overrightarrow{\mathrm{FG}}$と$\overrightarrow{\mathrm{AH}}$が垂直に交わるとき,$t$を求めよ.
(5)$(4)$において,その交点を$\mathrm{O}$としたとき,$\overrightarrow{\mathrm{AO}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(6)$(5)$の点$\mathrm{O}$に対して,線分$\mathrm{AO}$の長さを求めよ.
宮崎大学 国立 宮崎大学 2014年 第2問
下図の平行六面体において,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$,$\overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とし,$\triangle \mathrm{ACD}$と線分$\mathrm{OF}$の交点を$\mathrm{H}$とする.さらに,四面体$\mathrm{OACD}$が$1$辺の長さ$1$の正四面体であるとする.このとき,次の各問に答えよ.
(図は省略)

(1)$\triangle \mathrm{ACD}$の重心が点$\mathrm{H}$に一致することを示し,$2$つの線分$\mathrm{OH}$と$\mathrm{HF}$の比$\mathrm{OH}:\mathrm{HF}$を求めよ.
(2)内積$\overrightarrow{\mathrm{HE}} \cdot \overrightarrow{\mathrm{HF}}$の値を求めよ.
(3)$\triangle \mathrm{HEF}$の面積を求めよ.
宮崎大学 国立 宮崎大学 2014年 第2問
下図の平行六面体において,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$,$\overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とし,$\triangle \mathrm{ACD}$と線分$\mathrm{OF}$の交点を$\mathrm{H}$とする.さらに,四面体$\mathrm{OACD}$が$1$辺の長さ$1$の正四面体であるとする.このとき,次の各問に答えよ.
(図は省略)

(1)$\triangle \mathrm{ACD}$の重心が点$\mathrm{H}$に一致することを示し,$2$つの線分$\mathrm{OH}$と$\mathrm{HF}$の比$\mathrm{OH}:\mathrm{HF}$を求めよ.
(2)内積$\overrightarrow{\mathrm{HE}} \cdot \overrightarrow{\mathrm{HF}}$の値を求めよ.
(3)$\triangle \mathrm{HEF}$の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2014年 第4問
平面上に$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,$|\overrightarrow{\mathrm{OA}}|=\sqrt{5}$,$|\overrightarrow{\mathrm{OB}}|=1$,かつ$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=1$を満たすとする.ここで,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$は$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積を表す.また,$s$を実数とし,点$\mathrm{P}$,$\mathrm{Q}$を$\overrightarrow{\mathrm{OP}}=(1-s^2) \overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OQ}}=(1-s) \overrightarrow{\mathrm{OB}}$で定める.

(1)線分$\mathrm{AB}$の中点を$\mathrm{M}$とするとき,$\overrightarrow{\mathrm{MP}}$,$\overrightarrow{\mathrm{MQ}}$をそれぞれ$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,および$s$を用いて表せ.
(2)$\overrightarrow{\mathrm{MP}} \perp \overrightarrow{\mathrm{MQ}}$となる$s$の値をすべて求めよ.
福井大学 国立 福井大学 2014年 第1問
$\triangle \mathrm{OAB}$は$\mathrm{OA}=\mathrm{OB}=1$を満たす二等辺三角形とする.$t$を$\displaystyle \frac{1}{2}<t<1$を満たす定数とし,辺$\mathrm{AB}$を$1:t$に内分する点を$\mathrm{P}$,$\angle \mathrm{AOP}$の二等分線と辺$\mathrm{AB}$との交点を$\mathrm{Q}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$k=\mathrm{OP}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$と$t$を用いて表せ.
(2)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$と$t$,$k$を用いて表せ.
(3)$\mathrm{AQ}=\mathrm{BP}$が成り立つとする.$k$を$t$を用いて表せ.また内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$t$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2014年 第3問
辺の長さが$\mathrm{OA}=1$,$\mathrm{OB}=2$,$\mathrm{OC}=3$である四面体$\mathrm{OABC}$において,$\mathrm{OA} \perp \mathrm{AB}$,$\mathrm{OA} \perp \mathrm{AC}$とする.辺$\mathrm{OA}$の中点を$\mathrm{D}$とし,辺$\mathrm{OB}$を$1:3$に内分する点を$\mathrm{E}$,辺$\mathrm{OC}$を$1:8$に内分する点を$\mathrm{F}$とする.$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$を通る平面上の点$\mathrm{G}$が,$\mathrm{EG} \perp \mathrm{DE}$,$\mathrm{FG} \perp \mathrm{DF}$をみたすとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{a} \cdot \overrightarrow{c}$の値をそれぞれ求めよ.
(2)$\overrightarrow{b} \cdot \overrightarrow{c}=t$とおくとき,$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$t$を用いて表せ.
(3)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と直線$\mathrm{OG}$が点$\mathrm{H}$で交わるとする.直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{I}$とするとき,$\mathrm{BI}:\mathrm{IC}$を求めよ.
福井大学 国立 福井大学 2014年 第1問
三角形$\mathrm{OAB}$は$\mathrm{OA}=\mathrm{OB}=1$を満たす二等辺三角形とする.$t$を$\displaystyle \frac{1}{2}<t<1$を満たす定数とし,辺$\mathrm{AB}$を$1:t$に内分する点を$\mathrm{M}$,$\angle \mathrm{AOM}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{N}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$と表すとき,以下の問いに答えよ.

(1)$\mathrm{OM}=s$とおく.$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$s$,$t$を用いて表せ.
(2)$\mathrm{AN}=\mathrm{BM}$のとき,内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$t$を用いて表せ.
(3)$\cos \angle \mathrm{BOM}=x$とおく.$(2)$の仮定のもとで,さらに$x^2+\overrightarrow{a} \cdot \overrightarrow{b}=0$が成り立っているとき,辺$\mathrm{AB}$の長さを求めよ.
山口大学 国立 山口大学 2014年 第2問
$\triangle \mathrm{OAB}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{C}$とし,$\mathrm{OA}=7$,$\mathrm{OB}=6$,$\mathrm{OC}=5$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問いに答えなさい.

(1)$\overrightarrow{a},\ \overrightarrow{b}$を用いて$\overrightarrow{c}$を表しなさい.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めなさい.
(3)$\triangle \mathrm{OAB}$の面積を求めなさい.
茨城大学 国立 茨城大学 2014年 第3問
$\mathrm{OA}=\sqrt{3}$,$\mathrm{OB}=2$,$\mathrm{AB}=\sqrt{5}$となる三角形$\mathrm{OAB}$がある.三角形$\mathrm{OAB}$の内部の点$\mathrm{C}$から辺$\mathrm{OA}$,$\mathrm{OB}$に下ろした垂線の足をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とすると,
\[ \mathrm{OP}:\mathrm{PA}=2:1,\quad \mathrm{OQ}:\mathrm{QB}=1:2 \]
であった.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の各問に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{c} \cdot \overrightarrow{a}$,$\overrightarrow{c} \cdot \overrightarrow{b}$をそれぞれ求めよ.
(2)$\overrightarrow{c}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)点$\mathrm{C}$から辺$\mathrm{AB}$に下ろした垂線の足を$\mathrm{R}$とするとき,$\mathrm{AR}:\mathrm{RB}$を求めよ.

\mon[注] 点$\mathrm{X}$から辺$\mathrm{YZ}$に下ろした垂線の足とは,点$\mathrm{X}$から辺$\mathrm{YZ}$に下ろした垂線と辺$\mathrm{YZ}$との交点のことである.
スポンサーリンク

「内積」とは・・・

 まだこのタグの説明は執筆されていません。