タグ「内接」の検索結果

5ページ目:全207問中41問~50問を表示)
自治医科大学 私立 自治医科大学 2015年 第7問
四角形$\mathrm{ABCD}$は,円に内接する.各辺は,それぞれ,$\mathrm{AB}=2$,$\mathrm{BC}=3$,$\mathrm{CD}=4$,$\mathrm{DA}=5$であるとする.四角形$\mathrm{ABCD}$の面積を$S$とするとき,$\displaystyle \frac{S}{\sqrt{30}}$の値を求めよ.
東京理科大学 私立 東京理科大学 2015年 第2問
$\mathrm{AB}=2$,$\mathrm{BC}=3$,$\mathrm{CD}=6$,$\mathrm{DA}=5$である四角形$\mathrm{ABCD}$があり,この四角形は円$\mathrm{O}$に内接している.

(1)$\displaystyle \cos \angle \mathrm{B}=-\frac{[ア]}{[イ]}$であり,$\mathrm{AC}=\sqrt{[ウ][エ]}$である.

(2)円$\mathrm{O}$の半径は$\displaystyle \frac{[オ]}{[カ][キ]} \sqrt{[ク][ケ][コ]}$である.

(3)四角形$\mathrm{ABCD}$の面積は$[サ] \sqrt{[シ]}$である.

(4)四角形$\mathrm{ABCD}$は,ある円に外接している.この円の半径は$\displaystyle \frac{[ス]}{[セ]} \sqrt{[ソ]}$である.
北星学園大学 私立 北星学園大学 2015年 第3問
円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=\sqrt{14}$,$\mathrm{AD}=\sqrt{3}$,$\mathrm{CD}=1$,対角線$\mathrm{AC}=\sqrt{7}$とする.以下の問に答えよ.

(1)$\angle \mathrm{ADC}$の大きさを求めよ.
(2)$\angle \mathrm{ACB}$の大きさを求めよ.
金沢工業大学 私立 金沢工業大学 2015年 第4問
半径が$1$の球に内接する直円柱を考え,この直円柱の底面の半径を$x$とし,体積を$V$とする.

(1)$V=[ケ] \pi x^2 \sqrt{[コ]-x^2}$である.

(2)$\displaystyle \frac{dV}{dx}=\frac{[サ] \pi x(2-[シ]x^2)}{\sqrt{[ス]-x^2}}$である.

(3)$V$が最大になるのは$\displaystyle x=\frac{\sqrt{[セ]}}{[ソ]}$のときであり,その最大値は$\displaystyle \frac{[タ] \sqrt{[チ]}}{[ツ]} \pi$である.
東京女子大学 私立 東京女子大学 2015年 第6問
座標平面において,原点$(0,\ 0)$を中心とする円に内接する正三角形で,点$(3,\ 4)$を頂点の$1$つとするものを考える.この三角形の他の$2$つの頂点の座標を求めよ.
神奈川大学 私立 神奈川大学 2015年 第2問
辺の長さが$1$の正方形を$S_1$とし,$S_1$に内接する円を$C_1$,$C_1$に内接するひとつの正方形を$S_2$,$S_2$に内接する円を$C_2$とする.以下同様に,自然数$n$に対し,正方形$S_n$,円$C_n$を定める.すなわち,正方形$S_n$の内接円が$C_n$であり,正方形$S_{n+1}$は円$C_n$に内接している.このとき,次の問いに答えよ.

(1)$S_n$の辺の長さを$l_n$とするとき,$C_n$の半径を$l_n$で表せ.
(2)数列$\{l_n\}$の一般項を求めよ.
(3)$S_n$の内部から$C_n$の内部を除いた部分の面積を$a_n$とする.$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
西南学院大学 私立 西南学院大学 2015年 第5問
鋭角三角形$\mathrm{ABC}$において,$\mathrm{A}$から辺$\mathrm{BC}$に下した垂線の足を$\mathrm{D}$,$\mathrm{C}$から辺$\mathrm{AB}$に下した垂線の足を$\mathrm{E}$とする.$\mathrm{AD}$と$\mathrm{CE}$の交点を$\mathrm{F}$とし,$\mathrm{BF}$の延長と辺$\mathrm{AC}$の交点を$\mathrm{G}$とする.このとき以下の問に答えよ.

(1)四角形$\mathrm{BDFE}$は円に内接することを証明せよ.
(2)四角形$\mathrm{AEDC}$は円に内接することを証明せよ.
(3)三角形$\mathrm{ABG}$と三角形$\mathrm{ACE}$は相似であることを証明せよ.
(4)四角形$\mathrm{AEFG}$は円に内接することを証明せよ.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2015年 第2問
半径が$1$の円を底面とし,高さが$4$の直円錐に内接する直円柱を考える.この直円柱の表面積が最大となるときの底面の半径$x$の値と,その際の直円柱の体積$V$の値を求めよ.ただし円周率は$\pi$とする.
(図は省略)
西南学院大学 私立 西南学院大学 2015年 第2問
以下の問に答えよ.

(1)正$12$角形の辺と対角線の数を合わせると全部で$[クケ]$本ある.
(2)正$12$角形の辺と対角線を組み合わせてできる四角形は,全部で$[コサシ]$個である.
(3)円$C$に内接する正$12$角形がある.その正$12$角形の隣りあう$2$つの頂点を$\mathrm{A}$,$\mathrm{B}$とする.頂点$\mathrm{A}$を通る直線$\ell$が円$C$に接しているとき,直線$\ell$と直線$\mathrm{AB}$とがなす角は,${[スセ]}^\circ$である.ただし,$0^\circ \leqq {[スセ]}^\circ \leqq {90}^\circ$とする.
近畿大学 私立 近畿大学 2015年 第3問
座標平面において,中心が原点$\mathrm{O}$で点$\mathrm{P}(1,\ 0)$を通る円$C_1$と,中心が点$\mathrm{Q}(s,\ t)$で点$\mathrm{P}$を通る円$C_2$がある.ただし$t>0$とする.$C_1$と$C_2$の$\mathrm{P}$ではない交点を$\mathrm{R}$とし,$C_1$の境界を含む内部と$C_2$の境界を含む内部の共通部分を$D$とする.

(1)直線$\mathrm{PR}$の方程式は$s(x-[ア])+ty=0$である.$s=0$のとき,点$\mathrm{R}$は$t$の値によらず同じ位置にあって,その座標は$([イ][ウ],\ [エ])$である.

(2)$s=\sqrt{3} \, t$のとき,点$\mathrm{R}$は$s$と$t$の値によらず同じ位置にあって,その座標は$\displaystyle \left( \frac{[オ]}{[カ]},\ \frac{\sqrt{[キ]}}{[ク]} \right)$である.四角形$\mathrm{OPQR}$は円に内接するとする.このとき,点$\mathrm{Q}$の座標は$\displaystyle \left( [ケ],\ \frac{\sqrt{[コ]}}{[サ]} \right)$である.また,領域$D$の面積は$\displaystyle \frac{[シ]}{[ス][セ]} \pi-\frac{\sqrt{[ソ]}}{[タ]}$である.

(3)点$\mathrm{Q}$は$s+t=2$を満たしながら動くとする.線分$\mathrm{QR}$の長さが最小となるような点$\mathrm{R}$の座標は$\displaystyle \left( \frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right)$であり,このときの領域$D$の面積は$\displaystyle \frac{\pi}{4}-\frac{\alpha}{[ナ]}-\frac{[ニ]}{[ヌ]}$となる.ただし,$\displaystyle \sin \alpha=\frac{4}{5} \left( 0<\alpha<\frac{\pi}{2} \right)$である.
スポンサーリンク

「内接」とは・・・

 まだこのタグの説明は執筆されていません。