タグ「内接」の検索結果

18ページ目:全207問中171問~180問を表示)
岐阜大学 国立 岐阜大学 2011年 第4問
$k,\ n$は自然数で$n \geqq 3$とする.平面上の点$\mathrm{O}$を中心とする \\
半径1の円を$S_1$とする.右の図のように,半径$r_1$の$n$個の \\
円は隣り合う他の2つの円と外接し,かつ$S_1$に内接してい \\
る.さらに,点$\mathrm{O}$を中心とする円$S_2$は,半径$r_1$のすべて \\
の円に外接している.同様に,$k \geqq 2$に対して,半径$r_k$の \\
$n$個の円は隣り合う他の2つの円と外接し,かつ円$S_k$に内 \\
接している.さらに点$\mathrm{O}$を中心とする円$S_{k+1}$は,半径$r_k$ \\
のすべての円に外接している.$S_2$の半径を$s_2$とする.以下の問に答えよ.
\img{385_2485_2011_1}{60}


(1)$r_1$と$s_2$を$n$を用いて表せ.
(2)半径$r_k$の1つの円の面積を$T_k(n)$とする.$T_k(n)$を$k$と$n$を用いて表せ.
(3)$\displaystyle U(n)=n \sum_{k=1}^\infty T_k(n)$とする.$U(n)$を求めよ.
(4)$\displaystyle \lim_{n \to \infty}U(n)$を求めよ.
山形大学 国立 山形大学 2011年 第1問
四角形ABCDが円に内接しており,$\angle \text{ABC}=120^\circ,\ \text{AB}=2,\ \text{BC}=\sqrt{3}-1$を満たしているとする.このとき,次の問に答えよ.ただし,$\text{CD}=a,\ \text{AD}=b$とおき,2つの対角線AC,BDの交点をOとする.

(1)対角線ACの長さと$\angle \text{ACB}$の大きさを求めよ.
(2)対角線ACとBDが直交するとき,三角形AOBと三角形DOCは合同であることを示せ.
(3)対角線ACとBDが直交するとき,$a,\ b$の値を求めよ.
(4)$b=2a$のとき,$a$の値と$\angle \text{DCA},\ \angle \text{BAD}$の大きさを求めよ.
(5)$b=2a$のとき,三角形ABDに内接する円の半径$r$の値を求めよ.
岐阜大学 国立 岐阜大学 2011年 第3問
平面上に点Oを中心とする半径1の円$S$と$S$に内接する正三角形ABCがある.以下の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(3)平面上の任意の点Pに対して,以下の不等式が成り立つことを示せ.
\[ \text{AP}^2+\text{BP}^2+\text{CP}^2 \geqq 3 \]
また,等号が成り立つのはどのようなときか答えよ.
(4)円$S$の周上の任意の点Qに対して,
\[ (\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OQ}})^2+(\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OQ}})^2+(\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OQ}})^2=\frac{3}{2} \]
となることを示せ.
(5)円$S$の周上の任意の点Qに対して,
\[ \text{AQ}^4+\text{BQ}^4+\text{CQ}^4 \]
の値を求めよ.
小樽商科大学 国立 小樽商科大学 2011年 第2問
$3$辺の長さがそれぞれ$2$,$3$,$4$であるような三角形がある.この三角形の面積を$S$,この三角形に内接する円の半径を$r$とする.

(1)$S$を求めよ.
(2)$r$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第6問
図のように,点$\mathrm{O}$を中心とする半径$1$の円に内接する正$9$角形の頂点$\mathrm{A}_1$,$\mathrm{A}_2$,$\cdots$,$\mathrm{A}_9$から,長さが最大となる対角線を$2$本ずつ引き,それらの交点を$\mathrm{B}_1$,$\mathrm{B}_2$,$\cdots$,$\mathrm{B}_9$とする.これらの点を$\mathrm{A}_1 \to \mathrm{B}_1 \to \mathrm{A}_2 \to \mathrm{B}_2 \to \cdots \to \mathrm{A}_9 \to \mathrm{B}_9 \to \mathrm{A}_1$の順に線分で結んでできた図形を星型$S$とよぶ.ここで,$\tan 10^\circ=a$とするとき,$\triangle \mathrm{OA}_1 \mathrm{B}_1$の辺$\mathrm{OA_1}$を底辺としたときの高さを$h$とすると
\[ h=\frac{[ナ]a}{[ニ]-a^{[ヌ]}} \]
である.よって,星型$S$の面積は$[ネ]h$である.
(図は省略)
早稲田大学 私立 早稲田大学 2011年 第2問
$xy$平面上にある$3$つの半直線
\[ y=0 (x \geqq 0),\quad y=x\tan \theta (x \geqq 0),\quad y=-\sqrt{3}x (x \leqq 0) \]
と,原点$\mathrm{O}$を中心とする半径$r (r \geqq 1)$の円が交わる点をそれぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とする.ただし$\displaystyle\frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{3}$である.

(1)四角形$\mathrm{OABC}$の面積が半径$1$の円に内接する正六角形の面積の$\displaystyle\frac{1}{3}$に等しいとき,$r^2$を$\theta$を用いて表せ.
(2)$\displaystyle\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}r^2\,d\theta$を求めよ.
自治医科大学 私立 自治医科大学 2011年 第10問
円に内接する四角形$\mathrm{ABCD}$について考える($\angle \mathrm{ABC}=\theta$とする).四角形$\mathrm{ABCD}$の面積は,$4 \sqrt{6}$である.辺$\mathrm{AB}$および辺$\mathrm{BC}$の長さが,それぞれ,$1$,$5$であり,$\displaystyle \cos \theta=-\frac{1}{5}$となるとき,辺$\mathrm{CD}$の長さを求めよ.ただし,辺$\mathrm{CD}$の長さは辺$\mathrm{AD}$の長さより大きいものとする.
北海学園大学 私立 北海学園大学 2011年 第5問
半径$1$の円に内接する三角形$\mathrm{ABC}$において,$\angle \mathrm{A}=\alpha$,$\angle \mathrm{B}=\beta$とし,$\displaystyle \sin \alpha=\frac{3}{5}$,$\displaystyle \sin \beta=\frac{1}{2}$とする.$\gamma$が$\gamma>0^\circ$かつ$\alpha+\beta+\gamma=90^\circ$を満たすとき,次の問いに答えよ.

(1)$\mathrm{BC}$と$\mathrm{CA}$の長さをそれぞれ求めよ.
(2)$\sin \gamma$と$\cos \gamma$の値をそれぞれ求めよ.
(3)三角形$\mathrm{ABC}$の面積$S$を求めよ.
甲南大学 私立 甲南大学 2011年 第2問
四角形$\mathrm{ABCD}$は円$\mathrm{O}$に内接し$\mathrm{AB}=\mathrm{BC}=\sqrt{2}$,$\mathrm{CD}=2$,$\mathrm{DA}=1+\sqrt{3}$とする.このとき,以下の問いに答えよ.

(1)$\angle \mathrm{ABC}$の大きさと線分$\mathrm{AC}$の長さを求めよ.
(2)四角形$\mathrm{ABCD}$の面積を求めよ.
(3)円$\mathrm{O}$の半径を求めよ.
甲南大学 私立 甲南大学 2011年 第2問
四角形$\mathrm{ABCD}$は円$\mathrm{O}$に内接し$\mathrm{AB}=\mathrm{BC}=\sqrt{2}$,$\mathrm{CD}=2$,$\mathrm{DA}=1+\sqrt{3}$とする.このとき,以下の問いに答えよ.

(1)$\angle \mathrm{ABC}$の大きさと線分$\mathrm{AC}$の長さを求めよ.
(2)四角形$\mathrm{ABCD}$の面積を求めよ.
(3)円$\mathrm{O}$の半径を求めよ.
スポンサーリンク

「内接」とは・・・

 まだこのタグの説明は執筆されていません。