タグ「内接」の検索結果

17ページ目:全207問中161問~170問を表示)
北九州市立大学 公立 北九州市立大学 2012年 第3問
平面上で四角形$\mathrm{ABCD}$は円に内接し,$\mathrm{AB}=2 \sqrt{6}$,$\mathrm{AC}=\sqrt{6}(\sqrt{3}+1)$,$\mathrm{AD}=\sqrt{6}(\sqrt{3}-1)$,$\angle \mathrm{ADB}={45}^\circ$であるとする.以下の問いに答えよ.

(1)$\mathrm{BD}$を求めよ.
(2)$\mathrm{BC}$を求めよ.
(3)$\angle \mathrm{BCD}$を求めよ.
(4)$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とするとき$\mathrm{BE}$を求めよ.
秋田大学 国立 秋田大学 2011年 第3問
点$\mathrm{O}$を中心とし,半径が$r$である円に内接する$\triangle \mathrm{ABC}$について,$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$をそれぞれ$2:1$に内分する点を$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)$r$と内積$\overrightarrow{a}\cdot \overrightarrow{b}$を用いて$|\overrightarrow{\mathrm{OA^\prime}}|^2$を表せ.
(2)$3$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$を通る円の中心が点$\mathrm{O}$と一致するとき,$\triangle \mathrm{ABC}$が正三角形であることを示せ.
神戸大学 国立 神戸大学 2011年 第2問
$xy$平面上に相異なる4点A,B,C,Dがあり,線分ACと BDは原点Oで交わっている.点Aの座標は$(1,\ 2)$で,線分OAとODの長さは等しく,四角形ABCDは円に内接している.$\angle \text{AOD} = \theta$とおき,点Cの$x$座標を$a$,四角形ABCDの面積を$S$とする.以下の問に答えよ.

(1)線分OCの長さを$a$を用いた式で表せ.また,線分OBとOCの長さは等しいことを示せ.
(2)$S$を$a$と$\theta$を用いた式で表せ.
(3)$\displaystyle \theta = \frac{\pi}{6}$とし,$20 \leqq S \leqq 40$とするとき,$a$のとりうる値の最大値を求めよ.
千葉大学 国立 千葉大学 2011年 第3問
四角錐$\mathrm{OABCD}$において,底面$\mathrm{ABCD}$は$1$辺の長さ$2$の正方形で,
\[ \mathrm{OA} = \mathrm{OB} = \mathrm{OC} = \mathrm{OD} = \sqrt{5} \]
である.

(1)四角錐$\mathrm{OABCD}$の高さを求めよ.
(2)四角錐$\mathrm{OABCD}$に内接する球$S$の半径を求めよ.
(3)内接する球$S$の表面積と体積を求めよ.
奈良女子大学 国立 奈良女子大学 2011年 第4問
円に内接する四角形ABCDにおいて$\text{AB}=1,\ \text{BC}=2,\ \text{CD}=3,\ \text{DA}=4$であるとする.ACとBDの交点をEとする.以下の問いに答えよ.

(1)BDの長さを求めよ.
(2)$\text{BE}:\text{ED}$を求めよ.
(3)$\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{BE}}$を求めよ.
島根大学 国立 島根大学 2011年 第1問
円に内接する四角形$\mathrm{ABCD}$の辺の長さを
\[ \mathrm{AB}=\sqrt{2},\quad \mathrm{BC}=4,\quad \mathrm{CD}=3\sqrt{2},\quad \mathrm{DA}=2 \]
とする.このとき,次の問いに答えよ.

(1)対角線$\mathrm{BD}$の長さ$l$と,内角$\angle \mathrm{DAB}$の大きさ$\alpha$を求めよ.
(2)四角形$\mathrm{ABCD}$の面積$S$を求めよ.
(3)四角形$\mathrm{ABCD}$が内接する円の半径$R$を求めよ.
島根大学 国立 島根大学 2011年 第2問
半径$1$の球を$\mathrm{O}_1$とし,球$\mathrm{O}_1$に内接する立方体を$\mathrm{B}_1$とする.次に立方体$\mathrm{B}_1$に内接する球を$\mathrm{O}_2$とし,球$\mathrm{O}_2$に内接する立方体を$\mathrm{B}_2$とする.以下この操作を繰り返してできる球を$\mathrm{O}_n$,立方体を$\mathrm{B}_n \ (n=3,\ 4,\ \cdots)$とする.このとき,次の問いに答えよ.

(1)立方体$\mathrm{B}_1$の$1$辺の長さ$l_1$を求めよ.
(2)球$\mathrm{O}_n$の半径$r_n$を$n$を用いて表せ.
(3)球$\mathrm{O}_n$の体積を$V_n$とし,$S_k=V_1+V_2+\cdots+V_k$とするとき,$\displaystyle \lim_{k \to \infty} S_k$を求めよ.
島根大学 国立 島根大学 2011年 第2問
半径1の球をO$_1$とし,球O$_1$に内接する立方体をB$_1$とする.次に立方体B$_1$に内接する球をO$_2$とし,球O$_2$に内接する立方体をB$_2$とする.以下この操作を繰り返してできる球をO$_n$,立方体をB$_n \ (n=3,\ 4,\ \cdots)$とする.このとき,次の問いに答えよ.

(1)立方体B$_1$の1辺の長さ$l_1$を求めよ.
(2)球O$_n$の半径$r_n$を$n$を用いて表せ.
(3)球O$_n$の体積を$V_n$とし,$S_k=V_1+V_2+\cdots+V_k$とするとき,$\displaystyle \lim_{k \to \infty} S_k$を求めよ.
熊本大学 国立 熊本大学 2011年 第1問
四角形$\mathrm{ABCD}$において,
\[ \mathrm{AB}=a,\ \mathrm{BC}=b,\ \mathrm{CD}=c,\ \mathrm{DA}=d,\ \mathrm{AC}=x,\ \mathrm{BD}=y \]
とする.以下の問いに答えよ.

(1)$\cos \mathrm{A},\ \cos \mathrm{B},\ \cos \mathrm{C},\ \cos \mathrm{D}$を$a,\ b,\ c,\ d,\ x,\ y$を用いて表せ.
(2)四角形$\mathrm{ABCD}$が円に内接するとき,
\[ xy=ac+bd \]
が成り立つことを示せ.
岐阜大学 国立 岐阜大学 2011年 第3問
平面上に点Oを中心とする半径1の円$S$と$S$に内接する正三角形ABCがある.以下の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(3)平面上の任意の点Pに対して,以下の不等式が成り立つことを示せ.
\[ \text{AP}^2+\text{BP}^2+\text{CP}^2 \geqq 3 \]
また,等号が成り立つのはどのようなときか答えよ.
(4)円$S$の周上の任意の点Qに対して,
\[ (\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OQ}})^2+(\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OQ}})^2+(\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OQ}})^2=\frac{3}{2} \]
となることを示せ.
(5)円$S$の周上の任意の点Qに対して,
\[ \text{AQ}^4+\text{BQ}^4+\text{CQ}^4 \]
の値を求めよ.
スポンサーリンク

「内接」とは・・・

 まだこのタグの説明は執筆されていません。