タグ「内接」の検索結果

14ページ目:全207問中131問~140問を表示)
北九州市立大学 公立 北九州市立大学 2013年 第1問
以下の問いの空欄$[ア]$~$[コ]$に入れるのに適する数値,式を解答箇所に記せ.証明や説明は必要としない.

(1)$\sqrt{6+4 \sqrt{2}}$の小数部分を$a$とすると,$a=[ア]$,$\displaystyle a^2-\frac{1}{a^2}=[イ]$となる.
(2)$2$次関数$y=3x^2-6x+a+6 (0 \leqq x \leqq 3)$の最小値が$5$となるような定数$a$の値は$[ウ]$である.また,このとき最大値は$[エ]$である.
(3)$0,\ 1,\ 2,\ 3,\ 4,\ 5$の$6$個の数字から異なる$3$個の数字を取り出して並べ,$3$桁の整数を作るとき,整数は全部で$[オ]$個,偶数は全部で$[カ]$個となる.
(4)円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=5$,$\mathrm{BC}=\mathrm{CD}=7$,$\mathrm{DA}=3$とする.$\angle \mathrm{BAD}=\theta$とするとき,$\cos \theta$は$[キ]$,四角形$\mathrm{ABCD}$の面積は$[ク]$である.
(5)赤いカード$4$枚,青いカード$3$枚,合計$7$枚のカードがある.この中から$2$枚のカードを同時に取り出すとき,$2$枚とも赤いカードとなる確率は$[ケ]$である.また,赤いカードを$1$点,青いカードを$5$点とするとき,取り出した$2$枚のカードの合計点の期待値は$[コ]$である.
金沢大学 国立 金沢大学 2012年 第1問
半径$1$の円に内接する正$2^n$角形$(n \geqq 2)$の面積を$S_n$,周の長さを$L_n$とする.次の問いに答えよ.

(1)$\displaystyle S_n = 2^{n-1} \sin \frac{\pi}{2^{n-1}},\quad L_n=2^{n+1} \sin \frac{\pi}{2^n}$を示せ.

(2)$\displaystyle \frac{S_n}{S_{n+1}}= \cos \frac{\pi}{2^n},\quad \frac{S_n}{L_n}=\frac{1}{2} \cos \frac{\pi}{2^n}$を示せ.

(3)$\displaystyle \lim_{n \to \infty} S_n,\quad \lim_{n \to \infty} \cos \frac{\pi}{2^2}\cos \frac{\pi}{2^3} \cdots \cos \frac{\pi}{2^n}$を求めよ.

(4)$\displaystyle \lim_{n \to \infty}2^n \frac{S_2}{L_2}\frac{S_3}{L_3} \cdots \frac{S_n}{L_n}$を求めよ.
(図は省略)
岩手大学 国立 岩手大学 2012年 第1問
次の問いに答えよ.

(1)2次不等式$x^2+(a-3)x+a>0$がすべての実数$x$について成り立つように,実数$a$の値の範囲を求めよ.
(2)半径1の円に内接する正二十四角形の面積を求めよ.
(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{1}{n^2} \left( e^{\frac{1}{n}} +2e^{\frac{2}{n}} +3e^{\frac{3}{n}}+\cdots + ne^{\frac{n}{n}} \right) \]
岩手大学 国立 岩手大学 2012年 第1問
次の問いに答えよ.

(1)2次不等式$x^2+(a-3)x+a>0$がすべての実数$x$について成り立つように,実数$a$の値の範囲を求めよ.
(2)$\displaystyle \frac{x+y}{5}=\frac{y+2z}{6}=\frac{z+3x}{7} \neq 0$のとき,$\displaystyle \frac{2x^2-2y^2+9z^2}{4x^2+y^2-8z^2}$の値を求めよ.
(3)半径1の円に内接する正二十四角形の面積を求めよ.
岩手大学 国立 岩手大学 2012年 第1問
次の問いに答えよ.

(1)2次不等式$x^2+(a-3)x+a>0$がすべての実数$x$について成り立つように,実数$a$の値の範囲を求めよ.
(2)$\displaystyle \frac{x+y}{5}=\frac{y+2z}{6}=\frac{z+3x}{7} \neq 0$のとき,$\displaystyle \frac{2x^2-2y^2+9z^2}{4x^2+y^2-8z^2}$の値を求めよ.
(3)半径1の円に内接する正二十四角形の面積を求めよ.
高知大学 国立 高知大学 2012年 第3問
点Oを中心とする半径1の円に内接する正十角形の隣り合う頂点をA,Bとする.また,$\angle \text{OAB}$の二等分線と直線OBの交点をCとする.次の問いに答えよ.

(1)$\triangle$ABCと$\triangle$OABは相似になることを示せ.
(2)辺ABの長さを求めよ.
(3)$\displaystyle \cos \frac{2\pi}{5}$を求めよ.
(4)半径1の円に内接する正五角形の一辺の長さを求めよ.
島根大学 国立 島根大学 2012年 第1問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=5,\ \mathrm{CA}=8,\ \angle \mathrm{C}=60^\circ$とする.$\triangle \mathrm{ABC}$の外接円を$\mathrm{O}$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)円$\mathrm{O}$の半径を求めよ.
(3)$\triangle \mathrm{ABC}$と相似な$\triangle \mathrm{DEF}$に円$\mathrm{O}$が内接しているとき,$\triangle \mathrm{ABC}$と$\triangle \mathrm{DEF}$の相似比を求めよ.
島根大学 国立 島根大学 2012年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=5,\ \mathrm{CA}=8,\ \angle \mathrm{C}=60^\circ$とする.$\triangle \mathrm{ABC}$の外接円を$\mathrm{O}$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)円$\mathrm{O}$の半径を求めよ.
(3)$\triangle \mathrm{ABC}$と相似な$\triangle \mathrm{DEF}$に円$\mathrm{O}$が内接しているとき,$\triangle \mathrm{ABC}$と$\triangle \mathrm{DEF}$の相似比を求めよ.
旭川医科大学 国立 旭川医科大学 2012年 第2問
$C_1$を中心$(0,\ 0)$,半径$1$の円とし,$C_2$を中心$(0,\ 0)$,半径$r>1$の円とする.$ad-bc>0$を満たす行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$で表される$1$次変換により円$C_1$が円$C_2$に移るとする.次の問いに答えよ.

(1)$a^2+c^2=b^2+d^2=r^2,\ ab+cd=0$が成り立つことを示せ.
(2)$a=r \cos \theta,\ c=r \sin \theta \ (\theta \text{は実数})$とおくとき,$b,\ d$を$r,\ \theta$を用いて表せ.
(3)$B=\displaystyle\frac{1}{r} \left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$とする.また,$C_1$に外接し,$C_2$に内接する$8$個の相異なる円$S_1,\ S_2,\ \cdots,\ S_8$が次の$3$条件$(ⅰ),\ (ⅱ),\ (ⅲ)$を満たしているとする.このとき,$r$を求めよ.

(i) 行列$B$で表される$1$次変換により$S_i \ (i=1,\ 2,\ \cdots,\ 7)$は$S_{i+1}$に,$S_8$は$S_1$に移る.
(ii) $S_{i+1} \ (i=1,\ 2,\ \cdots,\ 7)$は$S_i$に外接し,$S_8$は$S_1$にも外接する.
(iii) $S_1$は$S_3,\ S_4,\ \cdots, S_7$と交わらない.
長崎大学 国立 長崎大学 2012年 第4問
$a$を正の定数とする.次の問いに答えよ.

(1)半径$a$の球面に内接する円柱の高さを$g$,底面の半径を$r$とする.$r$を$a$と$g$を用いて表せ.
(2)(1)の円柱で,体積が最大になるときの高さ,およびそのときの底面の半径と体積をそれぞれ$a$を用いて表せ.
(3)半径$a$の球面に内接する円錐がある.ただし,円錐の頂点と底面の中心を結ぶ線分は球の中心を通るものとする.円錐の高さを$h$,底面の半径を$s$とする.$s$を$a$と$h$を用いて表せ.
(4)(3)の円錐で,体積が最大になるときの高さ,およびそのときの底面の半径と体積をそれぞれ$a$を用いて表せ.
スポンサーリンク

「内接」とは・・・

 まだこのタグの説明は執筆されていません。