タグ「内接」の検索結果

13ページ目:全207問中121問~130問を表示)
安田女子大学 私立 安田女子大学 2013年 第2問
$\triangle \mathrm{ABC}$が中心$\mathrm{O}$,半径$r$の円に内接している.$\angle \mathrm{ACB}={15}^\circ$であり,線分$\mathrm{AB}$の長さを$c$とする.このとき,次の問いに答えよ.

(1)$\angle \mathrm{AOB}$を求めよ.
(2)$\angle \mathrm{OAB}$を求めよ.
(3)$c^2$を求めよ.
成城大学 私立 成城大学 2013年 第2問
円に内接する三角形$\mathrm{ABC}$があり,$\mathrm{BC}=a$,$\mathrm{CA}=b$,$\mathrm{AB}=c$とする($a>b$,$b<c$).下図のように,円周上に$\mathrm{D}$を,$\angle \mathrm{DBA}=\angle \mathrm{ABC}$となるようにとり,$\mathrm{BD}$を延長した直線と$\mathrm{CA}$を延長した直線が交わる点を$\mathrm{P}$とする.$a,\ b,\ c$を用いた式で空欄$[ア]$~$[コ]$を埋めよ.

$\mathrm{DP}$上に点$\mathrm{Q}$を$\angle \mathrm{DQA}=\angle \mathrm{BAC}$となるようにとる.四角形$\mathrm{ADBC}$は円に内接しているので,$\angle \mathrm{BDA}$と$\angle \mathrm{BCA}$の和は${180}^\circ$であるから,$\angle \mathrm{QDA}=\angle \mathrm{BCA}$であり,$\triangle \mathrm{QAD}$と$\triangle \mathrm{ABC}$は相似である.また,$\mathrm{AD}=[ア]$だから,$\mathrm{QD}=[イ]$である.
$\angle \mathrm{BQA}=\angle \mathrm{BAC}$,$\angle \mathrm{QBA}=\angle \mathrm{ABC}$であるから,$\triangle \mathrm{QBA}$と$\triangle \mathrm{ABC}$は相似であり,よって$\mathrm{QB}=[ウ]$となり,$\mathrm{BD}=\mathrm{QB}-\mathrm{QD}$だから,$\mathrm{BD}=[エ]$となる.
また,$\angle \mathrm{QDA}=\angle \mathrm{BCA}$であり,$\angle \mathrm{P}$は共通より,$\triangle \mathrm{PAD}$と$\triangle \mathrm{PBC}$は相似であるから,$\mathrm{DP}:\mathrm{CP}=[オ]:[カ]$となる.$\mathrm{CP}=\mathrm{AP}+[キ]$より,$\mathrm{DP}=[ク] \mathrm{AP}+[ケ]$となる.方べきの定理より,$\mathrm{DP} \cdot \mathrm{BP}=\mathrm{AP} \cdot \mathrm{CP}$であり,これを$\mathrm{AP}$について解くと$\mathrm{AP}=[コ]$となる.
(図は省略)
早稲田大学 私立 早稲田大学 2013年 第3問
$1$辺の長さが$1$の正方形$\mathrm{ABCD}$において,図のように$\mathrm{AW}=\mathrm{BX}=\mathrm{CY}=\mathrm{DZ}$となる点$\mathrm{W}$,$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$をとる.四角形$\mathrm{WXYZ}$に内接する円を$C_0$とし,$\triangle \mathrm{AWZ}$,$\triangle \mathrm{BXW}$,$\triangle \mathrm{CYX}$,$\triangle \mathrm{DZY}$に内接する円をそれぞれ$C_1$,$C_2$,$C_3$,$C_4$とする.$\mathrm{AW}=x$,$\mathrm{ZW}=a$とおくとき
\[ a^2=[セ]x^2+[ソ]x+1 \quad (0<x<1) \]
となる.円$C_0$,$C_1$,$C_2$,$C_3$,$C_4$の面積の総和を$S$とすると
\[ S=\frac{\pi}{4} \left( [タ]a^2+[チ]a+[ツ] \right) \]
となり,$\displaystyle a=\frac{[ト]}{[テ]}$のとき,$S$は最小値$\displaystyle \frac{\pi}{[ナ]}$をとる.
(図は省略)
早稲田大学 私立 早稲田大学 2013年 第3問
$1$辺の長さが$1$の正方形$\mathrm{ABCD}$において,図のように$\mathrm{AW}=\mathrm{BX}=\mathrm{CY}=\mathrm{DZ}$となる点$\mathrm{W}$,$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$をとる.四角形$\mathrm{WXYZ}$に内接する円を$C_0$とし,$\triangle \mathrm{AWZ}$,$\triangle \mathrm{BXW}$,$\triangle \mathrm{CYX}$,$\triangle \mathrm{DZY}$に内接する円をそれぞれ$C_1$,$C_2$,$C_3$,$C_4$とする.$\mathrm{AW}=x$,$\mathrm{ZW}=a$とおくとき
\[ a^2=[セ]x^2+[ソ]x+1 \quad (0<x<1) \]
となる.円$C_0$,$C_1$,$C_2$,$C_3$,$C_4$の面積の総和を$S$とすると
\[ S=\frac{\pi}{4} \left( [タ]a^2+[チ]a+[ツ] \right) \]
となり,$\displaystyle a=\frac{[ト]}{[テ]}$のとき,$S$は最小値$\displaystyle \frac{\pi}{[ナ]}$をとる.
(図は省略)
日本福祉大学 私立 日本福祉大学 2013年 第2問
$\mathrm{AB}=4$,$\mathrm{BC}=3$,$\angle \mathrm{ABC}={60}^\circ$である三角形$\mathrm{ABC}$がある.

(1)$\mathrm{AC}$の長さを求めよ.
(2)$\angle \mathrm{ABC}$の二等分線上の一点を$\mathrm{D}$とし,四角形$\mathrm{ABCD}$が円に内接する場合の四角形$\mathrm{ABCD}$の面積を求めよ.
愛知学院大学 私立 愛知学院大学 2013年 第1問
$\triangle \mathrm{ABC}$に内接する円$\mathrm{O}$がある.$\mathrm{AB}=9$,$\mathrm{BC}=8$,$\mathrm{CA}=7$のとき次の問に答えなさい.

(1)$\triangle \mathrm{ABC}$の面積は$[ア]$である.
(2)円$\mathrm{O}$の半径は$[イ]$である.
(3)$\mathrm{A}$から円の中心$\mathrm{O}$を通る直線が$\mathrm{BC}$に交わる点を$\mathrm{D}$とすると,$\triangle \mathrm{ABD}$の面積は$[ウ]$である.
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2013年 第3問
以下の問いに答えなさい.

(1)図のように半径$R (>0)$の円に内接する三角形$\mathrm{ABC}$において三辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$とする.このとき$\triangle \mathrm{ABC}$の面積$S$を半径$R$を用いて$\displaystyle S=\frac{G}{R}$のように表したとき,$G$を各辺の長さ$a,\ b,\ c$を用いて表わしなさい.

\begin{zahyou*}[ul=2mm](-12,12)(-12,12)%
\tenretu*{O(0,0);A(5,8.6);B(-8.6,-5);C(9.5,-3)e;D(20,5)s}%
{\thicklines
\En\O{10}%
\Drawline{\A\B\C\A}%
}
\tenretu*{D(5,9.3);E(-11,-6);F(10.5,-4);G(0,-5.6);H(5.8,1);I(-3.1,2.7)}%
\emathPut\D{$\mathrm{A}$}
\emathPut\E{$\mathrm{B}$}
\emathPut\F{$\mathrm{C}$}
\emathPut\G{$a$}
\emathPut\H{$b$}
\emathPut\I{$c$}
\end{zahyou*}

(2)図のように一辺の長さが$1$の正方形$\mathrm{ABCD}$の各頂点から$x$だけ離れた各辺上に点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$がある.このとき次の設問に答えなさい.ただし,$0 \leqq x \leqq 1$とする.

\begin{zahyou*}[ul=2mm](-12,12)(-14,15)%
\tenretu*{O(0,0);A(-10,10);B(-10,-10);C(10,-10);D(10,10);P(-10,6);Q(-6,-10);R(10,-6);S(6,10)}%
{\thicklines
\Drawline{\A\B\C\D\A}%
\Drawline{\P\Q\R\S\P}%
}
\HenKo<henkoH=2mm>\A\P{}
\HenKo<henkoH=2mm>\B\Q{}
\HenKo<henkoH=2mm>\C\R{}
\HenKo<henkoH=2mm>\D\S{}
\tenretu*{A(-11,11);B(-12.5,-10);C(10,-12);D(11,10);P(-12,4.5);Q(-6,-12);R(11,-6);S(5,11)}%
\emathPut\A{$\mathrm{A}$}
\emathPut\B{$\mathrm{B}$}
\emathPut\C{$\mathrm{C}$}
\emathPut\D{$\mathrm{D}$}
\emathPut\P{$\mathrm{P}$}
\emathPut\Q{$\mathrm{Q}$}
\emathPut\R{$\mathrm{R}$}
\emathPut\S{$\mathrm{S}$}
\tenretu*{X(-12.8,7.7);Y(-8.8,-12.7);Z(11.5,-8.7);W(7.5,11.5)}%
\emathPut\X{$x$}
\emathPut\Y{$x$}
\emathPut\Z{$x$}
\emathPut\W{$x$}
\end{zahyou*}


(i) 四角形$\mathrm{PQRS}$の面積$W$を求めなさい.
(ii) $W$が最小となるときの$x$の値を求めなさい.また,そのときの$W$の値も求めなさい.
島根県立大学 公立 島根県立大学 2013年 第3問
三角形$\mathrm{ABC}$の$3$辺の長さは,$\mathrm{AB}=5$,$\mathrm{BC}=7$,$\mathrm{CA}=8$である.次の問いに答えよ.

(1)$\cos \angle \mathrm{BAC}$の値を求めよ.
(2)三角形$\mathrm{ABC}$に内接する円の面積を求めよ.ただし,円周率は$\pi$とする.
(3)$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.このとき,線分$\mathrm{AD}$の長さを求めよ.
釧路公立大学 公立 釧路公立大学 2013年 第1問
以下の各問に答えよ.

(1)ある大学の売店では年会費を$5,000$円払えば会員となり,品物を$5 \, \%$引きで買うことができる.$1$個$380$円の品物を買うとき,何個以上買うと,会員になった方が,会員にならないよりも合計金額が安くなるか答えよ.
(2)$2$次関数$y=3x^2+6nx+12n$がある.

(i) この$2$次関数の最小値$m$を,$n$の関数で表せ.
(ii) $n$の値を変化させて,$(1)$における最小値$m$が最も大きくなるときの$n$の値と,そのときの$m$の値を求めよ.

(3)底面の半径が$6$,高さが$8$の円錐に内接する球$\mathrm{Q}$の表面積と体積を求めよ.ただし,円周率は$\pi$とする.
札幌医科大学 公立 札幌医科大学 2013年 第3問
曲線$7x^2+2 \sqrt{3}xy+9y^2=30$上の点$(x,\ y)$に対して,変換
\[ \left\{ \begin{array}{l}
X=x \cos \theta-y \sin \theta \\
Y=x \sin \theta+y \cos \theta \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \]
を考える(ただし$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする).このとき$X,\ Y$のみたす式は
\[ a(\theta)X^2+b(\theta)XY+c(\theta)Y^2=30 \]
となる.ただし,$a(\theta)$,$b(\theta)$,$c(\theta)$は$\theta$のみにより決まる定数である.いま,$b(\theta)=0$をみたす$\theta$を$\theta_1$とする.

(1)$\theta_1$を求めよ.
(2)$a(\theta_1)X^2+c(\theta_1)Y^2=30$で囲まれた図形の面積を求めよ.
(3)$a(\theta_1)X^2+c(\theta_1)Y^2=30$に内接する平行四辺形の面積の最大値を求めよ.
スポンサーリンク

「内接」とは・・・

 まだこのタグの説明は執筆されていません。