タグ「内接円」の検索結果

6ページ目:全82問中51問~60問を表示)
大分大学 国立 大分大学 2012年 第2問
三角形OABで$\displaystyle \overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ |\overrightarrow{a}|=|\overrightarrow{b}|=1,\ \angle \text{AOB}=\frac{\pi}{6}$とする.このとき次の問いに答えよ.

(1)三角形OABの外接円の中心(外心)Qの位置ベクトル$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
(2)頂点OとAからそれぞれの対辺ABとOBに下ろした垂線の交点(垂心)をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
(3)$|\overrightarrow{\mathrm{AB}}|$の値を求めよ.
(4)三角形OABの内接円の中心(内心)Pの位置ベクトル$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
防衛大学校 国立 防衛大学校 2012年 第4問
$\angle \mathrm{ACB}$が直角の$\triangle \mathrm{ABC}$において,$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.また,$\mathrm{AB}=20$,$\mathrm{BD}=15$とする.このとき,次の問に答えよ.

(1)$\displaystyle \frac{\mathrm{CD}}{\mathrm{AC}}$の値を求めよ.
(2)線分$\mathrm{AD}$の長さを求めよ.
(3)$\triangle \mathrm{ABD}$の内接円の半径$r$と,外接円の半径$R$を求めよ.
宮崎大学 国立 宮崎大学 2012年 第5問
次の各問に答えよ.
(図は省略)

(1)上図$\mathrm{I}$において,点$\mathrm{O}$を中心とする円の半径を$R$とする.この円の弦$\mathrm{XY}$上の任意の点を$\mathrm{P}$とするとき,等式
\[ \mathrm{OP}^2=R^2-\mathrm{XP} \cdot \mathrm{YP} \]
が成り立つことを示せ.
(2)上図$\mathrm{II}$の$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$,内心を$\mathrm{I}$とする.$\triangle \mathrm{ABC}$の外接円,内接円の半径をそれぞれ$R$,$r$とする.また,直線$\mathrm{AI}$と$\triangle \mathrm{ABC}$の外接円の,点$\mathrm{A}$と異なる交点を$\mathrm{D}$,$\triangle \mathrm{ABC}$の内接円と辺$\mathrm{AB}$との接点を$\mathrm{E}$とする.このとき,次の$(ⅰ),\ (ⅱ),\ (ⅲ)$に答えよ.

(i) $\mathrm{DB}=\mathrm{DI}$であることを示せ.
(ii) $\mathrm{AI} \cdot \mathrm{DI}=2Rr$であることを示せ.
(iii) $\mathrm{OI}^2=R^2-2Rr$であることを示せ.
福島大学 国立 福島大学 2012年 第2問
座標平面上の3点$\mathrm{A}(9,\ 12)$,$\mathrm{B}(0,\ 0)$,$\mathrm{C}(25,\ 0)$を頂点とする三角形$\mathrm{ABC}$および,三角形$\mathrm{ABC}$の内接円と外接円を考える.三角形$\mathrm{ABC}$の内接円は,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$とそれぞれ点$\mathrm{D},\ \mathrm{E},\ \mathrm{F}$で接する.また,三角形$\mathrm{ABC}$の内接円の中心と点$\mathrm{A}$を通る直線は,辺$\mathrm{BC}$と点$\mathrm{G}$で交わる.このとき,以下の問いに答えなさい.

(1)3辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さを求めなさい.
(2)線分$\mathrm{AE}$の長さを求めなさい.
(3)三角形$\mathrm{ABC}$の内接円の半径と中心の座標を求めなさい.
(4)点$\mathrm{G}$の座標を求めなさい.
(5)三角形$\mathrm{ABC}$の外接円の方程式を求めなさい.
山形大学 国立 山形大学 2012年 第1問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
山形大学 国立 山形大学 2012年 第4問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
上智大学 私立 上智大学 2012年 第2問
$\triangle \mathrm{ABC}$において, $\mathrm{AB}=4$,$\mathrm{BC}=6$,$\mathrm{CA}=5$とする.$\triangle \mathrm{ABC}$の外心を$\mathrm{P}$,内心を$\mathrm{Q}$とおく.

(1)$\triangle \mathrm{ABC}$の外接円の半径は$\displaystyle\frac{[コ]}{[サ]}\sqrt{[シ]}$である.
(2)$\triangle \mathrm{ABC}$の内接円の半径は$\displaystyle\frac{[ス]}{[セ]}\sqrt{[ソ]}$である.
(3)$\angle \mathrm{PAB}=\alpha$ とおくとき,$\cos \alpha = \displaystyle\frac{[タ]}{[チ]}\sqrt{[ツ]}$である.
(4)$\angle \mathrm{QAB}=\beta$ とおくとき,$\cos \beta = \displaystyle\frac{[テ]}{[ト]}$である.
(5)$\mathrm{AQ}=$[ナ]である.
(6)$\mathrm{PQ}= \displaystyle \frac{[ニ]}{[ヌ]}\sqrt{[ネ]}$である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2012年 第6問
$\triangle \mathrm{ABC}$の$3$辺の長さが$\mathrm{BC}=15,\ \mathrm{CA} = 4,\ \mathrm{AB} = 13$のとき,次の値を求めよ.

(1)$\cos A$および$\sin A$
(2)外接円の半径
(3)$\triangle \mathrm{ABC}$の面積および内接円の半径
自治医科大学 私立 自治医科大学 2012年 第14問
辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$のそれぞれの長さが,$2$,$6$,$6$となる三角形$\mathrm{ABC}$について考える.この三角形$\mathrm{ABC}$の内接円の半径を$r$,外接円の半径を$R$としたとき,$\displaystyle \frac{18r}{R}$の値を求めよ.
北海学園大学 私立 北海学園大学 2012年 第3問
$\mathrm{AB}=x$,$\mathrm{BC}=6$,$\mathrm{CA}=x+2$である三角形$\mathrm{ABC}$の辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$とし,$\mathrm{AD}=y$とする.三角形$\mathrm{ABD}$と三角形$\mathrm{ADC}$の内接円の半径をそれぞれ$r_1,\ r_2$とするとき,$\displaystyle \frac{r_2}{r_1}=\frac{3}{2}$を満たしている.ただし,$x$と$y$は定数とし,$x>0$,$y>0$とする.

(1)$x,\ y,\ \cos \angle \mathrm{ADB},\ \cos \angle \mathrm{ADC}$の値をそれぞれ求めよ.
(2)三角形$\mathrm{ABD}$と三角形$\mathrm{ADC}$の面積をそれぞれ求めよ.
(3)三角形$\mathrm{ABD}$と三角形$\mathrm{ADC}$の外接円の半径をそれぞれ$R_1,\ R_2$とするとき,$R_1$と$R_2$の値をそれぞれ求めよ.
スポンサーリンク

「内接円」とは・・・

 まだこのタグの説明は執筆されていません。