タグ「内接円」の検索結果

4ページ目:全82問中31問~40問を表示)
昭和大学 私立 昭和大学 2014年 第4問
四角形$\mathrm{ABCD}$は円$O$に内接していて,$\mathrm{AB}=3$,$\mathrm{BC}=7$,$\mathrm{CD}=7$,$\mathrm{DA}=5$とする.

(1)$\angle \mathrm{A}$の大きさを求めよ.
(2)四角形$\mathrm{ABCD}$の面積を求めよ.
(3)円$O$の半径を求めよ.
(4)三角形$\mathrm{ABD}$の内接円の半径を求めよ.
(5)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{E}$とするとき,$\sin \angle \mathrm{AEB}$の値を求めよ.
桜美林大学 私立 桜美林大学 2014年 第1問
次の問いに答えよ.

(1)$2$次関数$y=ax^2+bx+4$のグラフを原点に関して対称に移動し,さらに$y$軸の正方向に$c$だけ平行移動すると,$x$軸とで$(-1,\ 0)$で接し,点$\displaystyle \left( \frac{1}{2},\ 9 \right)$を通る放物線となった.このとき,$a=[ア]$,$b=[イ]$,$c=[ウ]$である.
(2)$6$個の文字$\mathrm{O}$,$\mathrm{O}$,$\mathrm{B}$,$\mathrm{B}$,$\mathrm{R}$,$\mathrm{N}$について,$6$個すべてを使ってできる順列の総数は$[エ][オ][カ]$個であり,$6$個のうち$4$個をとってできる順列の総数は,$[キ][ク][ケ]$個である.
(3)$\mathrm{O}$を原点とする$xy$座標平面上で,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(0,\ 3)$とする.三角形$\mathrm{OAB}$の外接円$C_1$の半径は$\displaystyle \frac{[コ]}{[サ]}$であり,三角形$\mathrm{OAB}$の内接円$C_2$の半径は$[シ]$である.
(4)$x$は実数とし,$t=2^x+2^{-x}$とおくと,$t$の最小値は$[ス]$である.また,$t^2-6t+8=0$を満たす異なる実数$x$の個数は$[セ]$個である.
(5)$x$の$2$次方程式$3x^2+(1+3i)x-2-2i=0$は実数解と虚数解をもつという.このとき,実数解は$\displaystyle \frac{[ソ]}{[タ]}$であり,虚数解は$[チ]+[ツ]i$である.ただし,$i$は虚数単位である.
北海学園大学 私立 北海学園大学 2014年 第3問
対角線が$\mathrm{AC}$,$\mathrm{BD}$である平行四辺形$\mathrm{ABCD}$の面積は$8 \sqrt{15}$であり,三角形$\mathrm{ABD}$は鋭角三角形である.このとき,頂点$\mathrm{D}$から辺$\mathrm{AB}$に下ろした垂線を$\mathrm{DH}$とし,$\mathrm{AB}=8$,$\mathrm{AH}=x$,$\mathrm{BD}=y$とする.ただし,$x>0$,$y>0$とする.

(1)$1 \leqq x \leqq 7$のとき,$y$の値の範囲を求めよ.
(2)$x=1$のとき,三角形$\mathrm{ABD}$の内接円の面積$S$の値を求めよ.
(3)三角形$\mathrm{ABD}$の内接円と三角形$\mathrm{BCD}$の内接円が接するとき,$x$の値を求めよ.
九州産業大学 私立 九州産業大学 2014年 第2問
直線$-3x+y-5=0$を$\ell_1$,直線$x+3y-15=0$を$\ell_2$,直線$-x+2y-5=0$を$\ell_3$とする.また,直線$\ell_1$と直線$\ell_2$の交点を$\mathrm{A}$,直線$\ell_2$と直線$\ell_3$の交点を$\mathrm{B}$,直線$\ell_1$と直線$\ell_3$の交点を$\mathrm{C}$とし,点$\mathrm{A}$から線分$\mathrm{BC}$へ下ろした垂線を$\mathrm{AD}$とする.

(1)点$\mathrm{A}$の座標は$([ア],\ [イ])$,点$\mathrm{B}$の座標は$([ウ],\ [エ])$,点$\mathrm{C}$の座標は$([オカ],\ [キ])$である.
(2)垂線$\mathrm{AD}$の長さは$\sqrt{[ク]}$であり,点$\mathrm{D}$の座標は$([ケ],\ [コ])$である.
(3)$\triangle \mathrm{ABC}$の面積は$[サ]$である.
(4)$\triangle \mathrm{ABC}$の内接円の半径は$\sqrt{[シス]}-\sqrt{[セ]}$である.
昭和薬科大学 私立 昭和薬科大学 2014年 第1問
次の問いに答えよ.

(1)${2}^{314}$は$[ア][イ]$桁の整数で,最高位の数は$[ウ]$である.ただし,最高位の数とは,例えば$5279$の場合は$5$を指す.また,$\log_{10}2$を$0.3010$,$\log_{10}3$を$0.4771$とする.
(2)図のような格子状の道路網がある.点$\mathrm{A}$から点$\mathrm{B}$まで最短経路で行く方法は$[エ][オ][カ]$通りある.また,点$\mathrm{A}$から線分$\mathrm{PQ}$を通らないで点$\mathrm{B}$まで最短経路で行く方法は$[キ][ク]$通りある.
(図は省略)
(3)$\mathrm{AB}=5$,$\mathrm{AC}=6$,$\mathrm{BC}=7$である$\triangle \mathrm{ABC}$の内接円の半径は$\displaystyle \frac{[ケ] \sqrt{[コ]}}{[サ]}$である.
(4)公比が負の数である等比数列がある.初項から第$4$項までの和は$\displaystyle \frac{75}{16}$,第$3$項と第$4$項の和は$\displaystyle \frac{27}{16}$である.この等比数列の初項は$[シ][ス]$で,公比は$\displaystyle \frac{[セ][ソ]}{[タ]}$である.
(5)条件$1 \leqq a \leqq 5$,$0 \leqq b<a$,$|c| \leqq b$を満たす整数の組$(a,\ b,\ c)$は全部で$[チ][ツ]$通りある.
(6)連立不等式
\[ |2x^2-8x+6| \leqq \frac{9}{8},\qquad x^3-6x^2+12x-8 \geqq 0 \]
の解は$\displaystyle \frac{[テ]+\sqrt{[ト]}}{[ナ]} \leqq x \leqq \frac{[ニ][ヌ]}{[ネ]}$である.
上智大学 私立 上智大学 2014年 第2問
$\angle \mathrm{A}$が鋭角で$\mathrm{AB}=6$,$\mathrm{AC}=4$の$\triangle \mathrm{ABC}$がある.$\angle \mathrm{A}$の二等分線と直線$\mathrm{BC}$の交点を$\mathrm{D}$,線分$\mathrm{AD}$を$2:1$に内分する点を$\mathrm{E}$とし,直線$\mathrm{BE}$と直線$\mathrm{AC}$の交点を$\mathrm{F}$とする.

(1)面積比$\triangle \mathrm{ABE}:\triangle \mathrm{ABC}$を最も簡単な整数比で表すと,
\[ \triangle \mathrm{ABE}:\triangle \mathrm{ABC}=[コ]:[サ] \]
である.
(2)線分比$\mathrm{AF}:\mathrm{FC}$を最も簡単な整数比で表すと,
\[ \mathrm{AF}:\mathrm{FC}=[シ]:[ス] \]
である.
(3)$\triangle \mathrm{ABE}$の面積が$\displaystyle \frac{8}{5}\sqrt{5}$であるとき,$\displaystyle \sin \angle \mathrm{BAC}=\frac{\sqrt{[セ]}}{[ソ]}$,$\mathrm{BC}=[タ] \sqrt{[チ]}$,$\displaystyle \sin \angle \mathrm{ABC}=\frac{[ツ]}{[テ]}$である.
また,$\triangle \mathrm{ABC}$の外接円の半径は$[ト]$であり,内接円の半径は$\sqrt{[ナ]}-[ニ]$である.
上智大学 私立 上智大学 2014年 第1問
正三角形$\mathrm{ABC}$において,点$\mathrm{A}$から辺$\mathrm{BC}$に下ろした垂線を$\mathrm{AD}$,点$\mathrm{B}$から辺$\mathrm{AC}$に下ろした垂線を$\mathrm{BE}$とする.$\triangle \mathrm{ABD}$の内心を$\mathrm{O}$とするとき,内接円$\mathrm{O}$の半径は$1$である.円$\mathrm{O}$と$3$辺$\mathrm{AB}$,$\mathrm{AD}$,$\mathrm{BD}$との接点をそれぞれ$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$とする.

(1)$\mathrm{AE}=[ア]+\sqrt{[イ]}$である.

(2)$\mathrm{AF}=[ウ]+\sqrt{[エ]}$である.

(3)$\mathrm{AO}=\sqrt{[オ]}+\sqrt{[カ]}$である.ただし,$[オ]<[カ]$とする.

(4)$\displaystyle \mathrm{FG}=\frac{\sqrt{[キ]}+\sqrt{[ク]}}{[ケ]}$である.ただし,$[キ]<[ク]$とする.

(5)円$\mathrm{O}$の点$\mathrm{H}$を含まない弧$\mathrm{FG}$と線分$\mathrm{AF}$および線分$\mathrm{AG}$で囲まれた図形の面積は
\[ [コ]+\sqrt{[サ]}+\frac{[シ]}{[ス]}\pi \]
である.
上智大学 私立 上智大学 2014年 第2問
$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\angle \mathrm{B}={60}^\circ$の$\triangle \mathrm{ABC}$がある.

(1)$\mathrm{AC}=[ア]$,$\triangle \mathrm{ABC}$の面積は$[イ] \sqrt{[ウ]}$,$\triangle \mathrm{ABC}$の内接円の半径は$\sqrt{[エ]}$である.
(2)$\triangle \mathrm{ABC}$の外接円の半径は$\displaystyle \frac{[オ]}{[カ]} \sqrt{[キ]}$である.
(3)$\triangle \mathrm{ABC}$の外接円の点$\mathrm{B}$を含まない弧$\mathrm{AC}$上に$\mathrm{AD}=3$となる点$\mathrm{D}$をとる.このとき,$\mathrm{CD}=[ク]$である.
(4)$\displaystyle \cos \angle \mathrm{BAD}=\frac{[ケ]}{[コ]}$,$\displaystyle \mathrm{BD}=\frac{[サ]}{[シ]}$である.
(5)$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とするとき,$\displaystyle \cos \angle \mathrm{AED}=\frac{[ス]}{[セ]}$である.
立教大学 私立 立教大学 2014年 第4問
$a$を正の実数とする.座標平面上に$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ 0)$,$\mathrm{B}(a,\ a)$,$\mathrm{C}(0,\ a)$がある.四角形$\mathrm{OABC}$の辺$\mathrm{AB}$上に点$\mathrm{P}(a,\ p)$をとり,点$\mathrm{P}$を通り$\mathrm{AC}$と平行な直線と$\mathrm{BC}$との交点を$\mathrm{Q}$とする.このとき,次の問に答えよ.

(1)三角形$\mathrm{OPQ}$の面積$S$を$a$と$p$を用いて表せ.
(2)三角形$\mathrm{OPQ}$の外接円の半径$R$を$a$と$p$を用いて表せ.
(3)三角形$\mathrm{OAP}$と三角形$\mathrm{PBQ}$の面積がともに$1$であるとき,$a-p$と$a+p$の値を求めよ.
(4)$(3)$のとき,$a$と$p$の値を求めよ.
(5)$a$と$p$が$(4)$で求めた値であるとき,三角形$\mathrm{OPQ}$の内接円の半径$r$の値を求めよ.
北海道医療大学 私立 北海道医療大学 2014年 第2問
三角形$\mathrm{ABC}$において,$\mathrm{AB}=\mathrm{AC}=l$,$\angle \mathrm{BAC}={108}^\circ$である.ただし,$l$は正の定数とする.この三角形の辺$\mathrm{BC}$上に点$\mathrm{D}$を$\mathrm{DA}=\mathrm{DB}$となるようにとり,$\angle \mathrm{ABC}=\theta$,$\mathrm{BD}=x$とするとき,以下の問に答えよ.

(1)以下の角度の値を求めよ.
$① \theta$ \qquad $② \angle \mathrm{CAD}$ \qquad $③ \angle \mathrm{CDA}$
(2)点$\mathrm{D}$から辺$\mathrm{AB}$へ下ろした垂線を$\mathrm{DE}$とするとき,三角形$\mathrm{BDE}$に着目して,$\cos \theta$を$x$と$l$を用いて表せ.
(3)点$\mathrm{A}$から辺$\mathrm{BC}$へ下ろした垂線を$\mathrm{AF}$とするとき,三角形$\mathrm{BAF}$に着目して,$\cos \theta$を$x$と$l$を用いて表せ.
(4)$x$を$l$を用いて表せ.
(5)$\cos \theta$の値を求めよ.
(6)三角形$\mathrm{ABC}$の外接円の半径と内接円の半径をそれぞれ$R,\ r$とするとき,次の$①$と$②$の値を分母を有理化して求めよ.

$\displaystyle ① \frac{R^2}{l^2}$ \qquad $\displaystyle ② \frac{r^2}{l^2}$
スポンサーリンク

「内接円」とは・・・

 まだこのタグの説明は執筆されていません。