タグ「内心」の検索結果

2ページ目:全26問中11問~20問を表示)
北里大学 私立 北里大学 2013年 第1問
次の各文の$[ ]$にあてはまる答を求めよ.

(1)$\mathrm{AB}=4$,$\mathrm{AD}=3$である四角形$\mathrm{ABCD}$において,$2$本の対角線の交点$\mathrm{E}$は線分$\mathrm{BD}$を$3:2$に内分し,線分$\mathrm{AC}$を$1:4$に内分しているとする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$とおく.このとき,ベクトル$\overrightarrow{\mathrm{AC}}$は$\overrightarrow{\mathrm{AC}}=[ア] \overrightarrow{b}+[イ] \overrightarrow{d}$と表せる.さらに,線分$\mathrm{AC}$と線分$\mathrm{BD}$が垂直に交わるとき,内積$\overrightarrow{b} \cdot \overrightarrow{d}$の値は$[ウ]$であり,四角形$\mathrm{ABCD}$の面積は$[エ]$である.
(2)$6$人の生徒$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$,$\mathrm{d}$,$\mathrm{e}$,$\mathrm{f}$を$3$つの部屋$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$に入れる.各部屋は$6$人まで入れることができる.このとき,空室があってもよいとして,$3$つの部屋への生徒の入れ方は全部で$[オ]$通りある.また,各部屋に$2$人ずつ入るような生徒の入れ方は全部で$[カ]$通りあり,空室ができないような生徒の入れ方は全部で$[キ]$通りある.
(3)$x$の関数$f(x)$を$\displaystyle f(x)=\int_1^{2x} |t(t-x)| \, dt$により定める.このとき,$f(x) \geqq 0$となるための$x$の条件は$[ク]$である.また,$f(1)$の値は$f(1)=[ケ]$であり,$x>1$のときの$f(x)$を求めると$f(x)=[コ]$である.
(4)三角形$\mathrm{ABC}$の内心を$\mathrm{I}$とし,三角形$\mathrm{ABC}$の外接円と直線$\mathrm{AI}$との交点で$\mathrm{A}$以外のものを$\mathrm{D}$とする.$\mathrm{AB}=2$,$\mathrm{AC}=3$,$\mathrm{AD}=4$のとき,$\cos \angle \mathrm{BAD}=[サ]$であり,$\mathrm{BD}=[シ]$,$\mathrm{CD}=[ス]$,$\mathrm{BC}=[セ]$である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2013年 第3問
$\mathrm{O}$を中心とする半径$1$の円周上に相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおき,$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \neq \overrightarrow{\mathrm{0}}$とする.線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の中点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とし,$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$,$\overrightarrow{\mathrm{OR}}=\overrightarrow{r}$とおく.

このとき,以下の$[$1$]$~$[$6$]$について適切な値を,$[イ]$には適切な式を解答欄に答えなさい.また,$[ア]$,$[ウ]$には下部の選択肢からもっともふさわしいものを選択して,解答欄に記入しなさい.
ベクトル$\displaystyle \overrightarrow{d}=\frac{1}{2}(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})$とすると,
\[ |\overrightarrow{d}-\overrightarrow{p}|=|\overrightarrow{d}-\overrightarrow{q}|=|\overrightarrow{d}-\overrightarrow{r}|=[$1$] \]
となり,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$によって定まる点$\mathrm{D}$は$\triangle \mathrm{PQR}$の$[ア]$となることがわかる.
いま,線分$\mathrm{AB}$の長さを$1$,線分$\mathrm{AC}$の長さを$\sqrt{3}$とし,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$は,どの$2$つも平行ではないとする.このとき,線分$\mathrm{BC}$の長さは$[$2$]$であり,$\overrightarrow{a} \cdot \overrightarrow{c}=[$3$]$である.また,$\overrightarrow{b}$を$\overrightarrow{a}$と$\overrightarrow{c}$で表すと,$\overrightarrow{b}=[イ]$となる.
また,$\triangle \mathrm{PQR}$について,$\angle \mathrm{QPR}$の二等分線と辺$\mathrm{QR}$の交点を$\mathrm{S}$とおき,$\overrightarrow{\mathrm{PS}}$を$\overrightarrow{a}$と$\overrightarrow{c}$で表すと,
\[ \overrightarrow{\mathrm{PS}}=[$4$] \overrightarrow{a}+[$5$] \overrightarrow{c} \]
とかける.同様にして,$\angle \mathrm{PQR}$の二等分線と辺$\mathrm{PR}$の交点を$\mathrm{T}$とおく.線分$\mathrm{PS}$と線分$\mathrm{QT}$の交点を$\mathrm{U}$とおくと,$\mathrm{U}$は$\triangle \mathrm{PQR}$の$[ウ]$となり,
\[ \overrightarrow{\mathrm{OU}}=[$6$] \overrightarrow{b} \]
となることがわかる.
\begin{screen}
選択肢: \quad 重心, \quad 内心, \quad 外心
\end{screen}
中京大学 私立 中京大学 2013年 第1問
以下の各問で,$[ ]$にあてはまる数値または記号を求めよ.

(1)放物線$y=ax^2+bx+c$が$3$点$(-3,\ -15)$,$(0,\ -24)$,$(3,\ 21)$を通るとき,
\[ a=[ア],\quad b=[イ],\quad c=-[ウ][エ] \]
であり,この放物線と$x$軸との交点は$(-[オ],\ 0)$,$([カ],\ 0)$である.
(2)点$\mathrm{O}$を$\triangle \mathrm{ABC}$の内心とする.$\angle \mathrm{BAC}={60}^\circ$,$\angle \mathrm{ABO}={35}^\circ$のとき,
\[ \angle \mathrm{ACO}={[キ][ク]}^\circ,\quad \angle \mathrm{BOC}={[ケ][コ][サ]}^\circ \]
である.
(3)関数$\displaystyle y=\frac{1}{3} {\left( \frac{1}{8} \right)}^x-2 {\left( \frac{1}{4} \right)}^x+3 {\left( \frac{1}{2} \right)}^x+1 (x>-2)$は


$x=[シ]$で最大値$\displaystyle \frac{[ス]}{[セ]}$


をとり,

$x=-\log_2 [ソ]$で最小値$[タ]$

をとる.
(4)条件$a_1=0$,$\displaystyle a_n=a_{n-1}+\frac{n-1}{2013} (n=2,\ 3,\ 4,\ \cdots)$によって定められる数列$\{a_n\}$において,$a_n \geqq 1$を満たす最小の$n$は$[チ][ツ]$であり,
\[ a_{[チ][ツ]}=\frac{[テ][ト][ナ]}{[ニ][ヌ][ネ]} \]
である.
大阪市立大学 公立 大阪市立大学 2013年 第3問
$\mathrm{OA}=4$,$\mathrm{OB}=5$,$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=\frac{5}{2}$である三角形$\mathrm{OAB}$に対し,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.次の問いに答えよ.

(1)辺$\mathrm{AB}$の長さを求めよ.
(2)$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{P}$,$\angle \mathrm{OAB}$の二等分線と辺$\mathrm{OB}$の交点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)三角形$\mathrm{OAB}$の内心を$\mathrm{I}$とする.$\overrightarrow{\mathrm{OI}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
大阪市立大学 公立 大阪市立大学 2013年 第4問
$\mathrm{OA}=4$,$\mathrm{OB}=5$である三角形$\mathrm{OAB}$に対し,$k=\mathrm{AB}$,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$の値を$k$を用いて表せ.
(2)$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{P}$,$\angle \mathrm{OAB}$の二等分線と辺$\mathrm{OB}$の交点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$を$k$,$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)三角形$\mathrm{OAB}$の内心を$\mathrm{I}$とする.$\overrightarrow{\mathrm{OI}}$を$k$,$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(4)(3)の$\mathrm{I}$と直線$\mathrm{OA}$上の点$\mathrm{H}$に対して,$\mathrm{IH} \perp \mathrm{OA}$が成り立つとき,$\overrightarrow{\mathrm{IH}}$を$k$,$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
三重県立看護大学 公立 三重県立看護大学 2013年 第1問
次の$(1)$から$(6)$の$[ ]$に適する答えを書きなさい.

(1)$\overrightarrow{a}=(4,\ 3)$に垂直な単位ベクトルは$2$つあり,$[ ]$と$[ ]$である.
(2)$0,\ 1,\ 2,\ 3,\ 4$の$5$つの数字から$4$つの数字を選んで$4$桁の整数をつくるとき,その個数は全部で$[ ]$個である.ただし,各数字は$1$回しか使えないこととする.
(3)$2x^2-5xy-3y^2+3x+5y-2$を因数分解すると$[ ]$となる.
(4)三角形$\mathrm{ABC}$の内心を$\mathrm{I}$,$\angle \mathrm{BAC}=50^\circ$,$\angle \mathrm{ICA}=25^\circ$のとき,$\angle \mathrm{BIC}$は$[ ]^\circ$となる.
(5)$1^2,\ 3^2,\ 5^2,\ 7^2,\ \cdots$の第$n$項までの和は$[ ]$である.
(6)$\sin 75^\circ$,$\sin 22.5^\circ$を計算すると,それぞれ$[ ]$,$[ ]$となる.
奈良県立医科大学 公立 奈良県立医科大学 2013年 第6問
$\triangle \mathrm{ABC}$の内心を$\mathrm{I}$とし,$\mathrm{AI}$の延長が外接円と交わる点を$\mathrm{D}$とする.$\mathrm{AB}$の長さが$3$,$\mathrm{AC}$の長さが$4$,$\angle \mathrm{BAC}$の大きさは${60}^\circ$である.このとき,$\mathrm{DI}$の長さを求めよ.
(図は省略)
大分大学 国立 大分大学 2012年 第2問
三角形OABで$\displaystyle \overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ |\overrightarrow{a}|=|\overrightarrow{b}|=1,\ \angle \text{AOB}=\frac{\pi}{6}$とする.このとき次の問いに答えよ.

(1)三角形OABの外接円の中心(外心)Qの位置ベクトル$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
(2)頂点OとAからそれぞれの対辺ABとOBに下ろした垂線の交点(垂心)をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
(3)$|\overrightarrow{\mathrm{AB}}|$の値を求めよ.
(4)三角形OABの内接円の中心(内心)Pの位置ベクトル$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
宮崎大学 国立 宮崎大学 2012年 第5問
次の各問に答えよ.
(図は省略)

(1)上図$\mathrm{I}$において,点$\mathrm{O}$を中心とする円の半径を$R$とする.この円の弦$\mathrm{XY}$上の任意の点を$\mathrm{P}$とするとき,等式
\[ \mathrm{OP}^2=R^2-\mathrm{XP} \cdot \mathrm{YP} \]
が成り立つことを示せ.
(2)上図$\mathrm{II}$の$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$,内心を$\mathrm{I}$とする.$\triangle \mathrm{ABC}$の外接円,内接円の半径をそれぞれ$R$,$r$とする.また,直線$\mathrm{AI}$と$\triangle \mathrm{ABC}$の外接円の,点$\mathrm{A}$と異なる交点を$\mathrm{D}$,$\triangle \mathrm{ABC}$の内接円と辺$\mathrm{AB}$との接点を$\mathrm{E}$とする.このとき,次の$(ⅰ),\ (ⅱ),\ (ⅲ)$に答えよ.

(i) $\mathrm{DB}=\mathrm{DI}$であることを示せ.
(ii) $\mathrm{AI} \cdot \mathrm{DI}=2Rr$であることを示せ.
(iii) $\mathrm{OI}^2=R^2-2Rr$であることを示せ.
宮崎大学 国立 宮崎大学 2012年 第5問
右図のように,$\triangle \mathrm{ABC}$の内部に点$\mathrm{P}$をとる.$\triangle \mathrm{PAB}$,$\triangle \mathrm{PBC}$, \\
$\triangle \mathrm{PCA}$の面積をそれぞれ$S_{\mathrm{AB}}$,$S_{\mathrm{BC}}$,$S_{\mathrm{CA}}$とするとき,次の各問 \\
に答えよ.

(1)点$\mathrm{P}$が$\triangle \mathrm{ABC}$の内心で,${S_{\mathrm{AB}}}^2+{S_{\mathrm{CA}}}^2={S_{\mathrm{BC}}}^2$が成り立つとき, \\
$\angle \mathrm{BAC}$の大きさを求めよ.
(2)${S_{\mathrm{AB}}}={S_{\mathrm{BC}}}={S_{\mathrm{CA}}}$が成り立つとき,点$\mathrm{P}$は$\triangle \mathrm{ABC}$の重心であることを示せ.
\img{735_3040_2012_1}{40}
スポンサーリンク

「内心」とは・・・

 まだこのタグの説明は執筆されていません。