タグ「内心」の検索結果

1ページ目:全26問中1問~10問を表示)
南山大学 私立 南山大学 2016年 第3問
$3$辺の長さが$\mathrm{OP}=5$,$\mathrm{OQ}=6$,$\mathrm{PQ}=7$である$\triangle \mathrm{OPQ}$の内心を$\mathrm{I}$とし,直線$\mathrm{OI}$と辺$\mathrm{PQ}$の交点を$\mathrm{C}$とする.また,$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$とおく.

(1)面積比$\triangle \mathrm{IOP}:\triangle \mathrm{IOQ}:\triangle \mathrm{IPQ}$を求めよ.
(2)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{p}$と$\overrightarrow{q}$で表せ.
(3)$\overrightarrow{\mathrm{OI}}$を$\overrightarrow{p}$と$\overrightarrow{q}$で表せ.
(4)点$\mathrm{R}$を,$\overrightarrow{\mathrm{QR}}=-\overrightarrow{p}$となるようにとり,$\triangle \mathrm{OQR}$の内心を$\mathrm{J}$とする.このとき,$k \overrightarrow{\mathrm{OI}}-\overrightarrow{\mathrm{OJ}}$と$\overrightarrow{p}$が平行となる$k$の値を求めよ.
岡山理科大学 私立 岡山理科大学 2016年 第4問
$\triangle \mathrm{ABC}$において,内心を$\mathrm{I}$,外心を$\mathrm{O}$,内接円の半径を$r$,外接円の半径を$R$とするとき,次の問いに答えよ.

(1)$\angle \mathrm{BAC}=\alpha$とするとき,$\angle \mathrm{BIC}$を$\alpha$の式で表せ.
(2)直線$\mathrm{AI}$と$\triangle \mathrm{ABC}$の外接円との$\mathrm{A}$でない交点を$\mathrm{D}$とするとき,$3$点$\mathrm{B}$,$\mathrm{C}$,$\mathrm{I}$は$\mathrm{D}$を中心とする同一円周上にあることを証明せよ.
(3)$2$点$\mathrm{I}$,$\mathrm{O}$の距離を$d$とする.$\mathrm{AB}=\mathrm{AC}$のとき,等式$(R+d)(R-d)=2rR$および不等式$R \geqq 2r$を証明せよ.
(4)$\mathrm{AB} \neq \mathrm{AC}$のとき,不等式$R>2r$を証明せよ.
名城大学 私立 名城大学 2016年 第1問
次の$[ ]$にあてはまる答えを記入せよ.

(1)$100$未満の自然数で,$3$または$4$または$5$で割り切れる数は$[ア]$個,$3$または$4$で割り切れ$5$では割り切れない数は$[イ]$個である.
(2)\begin{mawarikomi}{45mm}{
(図は省略)
}
右図において,点$\mathrm{I}$を$\triangle \mathrm{ABC}$の内心,点$\mathrm{D}$を直線$\mathrm{AI}$と辺$\mathrm{BC}$の交点とし,$\mathrm{AB}=3$,$\mathrm{BC}=4$,$\mathrm{CA}=6$とする.このとき,$\mathrm{BD}=[ウ]$であり,$\displaystyle \frac{\mathrm{AI}}{\mathrm{ID}}=[エ]$である.
\end{mawarikomi}

(3)整数$a$を$3$進数${122}_{(3)}$で割ったときの商と余りは,それぞれ${212}_{(3)}$と${102}_{(3)}$である.このとき,$a$を$3$進法で表すと${[オ]}_{(3)}$であり,$a$と$5$進数${410}_{(5)}$の和を$5$進法で表すと${[カ]}_{(5)}$である.
(4)不等式$2 |x-a|<x+1$について考える.$a=5$のとき,この不等式を満たす整数$x$は$[キ]$個である.また,この不等式を満たす整数$x$が$5$個あるとき,整数$a$の値は$[ク]$である.
(5)$\displaystyle -\frac{\pi}{4} \leqq \theta \leqq \frac{\pi}{4}$で$\displaystyle \sin \theta+\cos \theta=\frac{1}{2}$のとき,$\sin 2\theta=[ケ]$,$\cos 2\theta=[コ]$である.
(6)$a,\ b$は自然数で,$a^5 b^2$が$20$桁の数であり,かつ,$\displaystyle \frac{a^5}{b^2}$の整数部分が$10$桁であるとする.このとき,$a,\ b$の桁数をそれぞれ$m,\ n$とすると,$m=[サ]$,$n=[シ]$である.
(7)円$x^2+y^2-2(x+y)+1=0$と直線$y+2x=k$が共有点をもつとき,$k$の最大値は$[ス]$である.また,この円と直線$y=ax-3a$が共有点をもつとき,$a$の最小値は$[セ]$である.
札幌医科大学 公立 札幌医科大学 2015年 第3問
三角形$\mathrm{ABC}$の重心を$\mathrm{G}$,内心を$\mathrm{I}$とし,$\mathrm{BC}=a$,$\mathrm{CA}=b$,$\mathrm{AB}=c$とする.また直線$\mathrm{AI}$が辺$\mathrm{BC}$と交わる点を$\mathrm{D}$とする.

(1)線分$\mathrm{BD}$の長さを$a,\ b,\ c$を用いて表せ.
(2)比$\mathrm{AI}:\mathrm{ID}$を$a,\ b,\ c$を用いて表せ.
今後,$a+b+c=1$とし,三角形$\mathrm{BGC}$の面積を$S$,三角形$\mathrm{BIC}$の面積を$T$とおく.
(3)$\displaystyle \frac{T}{S}$を$a$を用いて表せ.
(4)$b<a<c$とするとき,$\displaystyle \frac{T}{S}$のとりうる値の範囲を求めよ.
鳴門教育大学 国立 鳴門教育大学 2014年 第3問
$\triangle \mathrm{ABC}$の内心を$\mathrm{I}$,外心を$\mathrm{O}$,内接円の半径を$r$,外接円の半径を$R$とするとき,次の問いに答えなさい.

(1)$\mathrm{I}$と$\mathrm{O}$が一致するとき,$R=2r$となることを証明しなさい.
(2)$\angle \mathrm{ABC}$と$\angle \mathrm{ACB}$がともに${60}^\circ$より小さいとき,$\mathrm{BC}>2 \sqrt{3}r$となることを証明しなさい.
長崎大学 国立 長崎大学 2014年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=5$,$\mathrm{BC}=7$,$\mathrm{CA}=6$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の内心を$\mathrm{I}$とする.$\angle \mathrm{A}$の$2$等分線と$\angle \mathrm{B}$の$2$等分線は点$\mathrm{I}$で交わる.$\angle \mathrm{B}$の$2$等分線と辺$\mathrm{AC}$の交点を$\mathrm{D}$とするとき,$\mathrm{AD}:\mathrm{DC}$と$\mathrm{BI}:\mathrm{ID}$を求めよ.
(2)$\overrightarrow{\mathrm{AI}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
(3)$\angle \mathrm{A}=\theta$とする.$\cos \theta$と内積$\overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(4)実数$x,\ y$を用いて$\overrightarrow{\mathrm{AP}}=x \overrightarrow{b}+y \overrightarrow{c}$と表される点$\mathrm{P}$を考える.点$\mathrm{P}$が辺$\mathrm{AB}$の垂直$2$等分線上にあるとき,$x$と$y$が満たす関係式を求めよ.
(5)$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$とする.辺$\mathrm{AB}$の垂直$2$等分線と辺$\mathrm{AC}$の垂直$2$等分線は点$\mathrm{O}$で交わる.$\overrightarrow{\mathrm{AO}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
杏林大学 私立 杏林大学 2014年 第3問
$[ケ]$,$[ヌ]$,$[ネ]$の解答は解答群の中から最も適当なものを$1$つ選べ.

$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がそれぞれ$x$軸,$y$軸,$z$軸上にあり,原点$\mathrm{O}$を頂点に持つ$3$つの三角形$\mathrm{OAB}$,$\mathrm{OBC}$,$\mathrm{OCA}$の面積の比が$1:\sqrt{3}:\sqrt{5}$となっている.三角形$\mathrm{ABC}$を含む平面を$\alpha$とする.

(1)平面$\alpha$上にある点$\mathrm{P}$の位置ベクトルを$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}+u \overrightarrow{\mathrm{OC}}$と表わすと,$s+t+u=[ア]$が成り立つ.
(2)$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る球面の中心を$\mathrm{D}$とすると
\[ \overrightarrow{\mathrm{OD}}=\frac{[イ]}{[ウ]} \overrightarrow{\mathrm{OA}}+\frac{[エ]}{[オ]} \overrightarrow{\mathrm{OB}}+\frac{[カ]}{[キ]} \overrightarrow{\mathrm{OC}} \]
と表わされる.
直線$\mathrm{OD}$と平面$\alpha$の交点$\mathrm{G}$は,線分$\mathrm{OD}$を$[ク]:1$に内分する.点$\mathrm{G}$は三角形$\mathrm{ABC}$の$[ケ]$である.
(3)原点$\mathrm{O}$から平面$\alpha$に下ろした垂線の足を$\mathrm{H}$とすると
\[ \overrightarrow{\mathrm{OH}}=\frac{[コ]}{[サ]} \overrightarrow{\mathrm{OA}}+\frac{[シ]}{[ス]} \overrightarrow{\mathrm{OB}}+\frac{[セ]}{[ソ]} \overrightarrow{\mathrm{OC}}, \]
点$\mathrm{D}$から平面$\alpha$に下ろした垂線の足を$\mathrm{E}$とすると
\[ \overrightarrow{\mathrm{OE}}=\frac{[タ]}{[チ]} \overrightarrow{\mathrm{OA}}+\frac{[ツ]}{[テ]} \overrightarrow{\mathrm{OB}}+\frac{[ト]}{[ナ]} \overrightarrow{\mathrm{OC}} \]
が成り立つ.
点$\mathrm{G}$は線分$\mathrm{EH}$を$1:[ニ]$に内分する.
点$\mathrm{H}$は三角形$\mathrm{ABC}$の$[ヌ]$であり,点$\mathrm{E}$は三角形$\mathrm{ABC}$の$[ネ]$である.

$[ケ]$,$[ヌ]$,$[ネ]$の解答群
\mon[$①$] 重心
\mon[$②$] 内心
\mon[$③$] 外心
\mon[$④$] 垂心
\mon[$⑤$] 三辺の中点を通る円の中心
\mon[$⑥$] 頂点$\mathrm{A}$,$\mathrm{B}$における外角の二等分線の交点
\mon[$④chi$] 頂点$\mathrm{B}$,$\mathrm{C}$における外角の二等分線の交点
\mon[$\maruhachi$] 頂点$\mathrm{A}$,$\mathrm{C}$における外角の二等分線の交点
上智大学 私立 上智大学 2014年 第1問
正三角形$\mathrm{ABC}$において,点$\mathrm{A}$から辺$\mathrm{BC}$に下ろした垂線を$\mathrm{AD}$,点$\mathrm{B}$から辺$\mathrm{AC}$に下ろした垂線を$\mathrm{BE}$とする.$\triangle \mathrm{ABD}$の内心を$\mathrm{O}$とするとき,内接円$\mathrm{O}$の半径は$1$である.円$\mathrm{O}$と$3$辺$\mathrm{AB}$,$\mathrm{AD}$,$\mathrm{BD}$との接点をそれぞれ$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$とする.

(1)$\mathrm{AE}=[ア]+\sqrt{[イ]}$である.

(2)$\mathrm{AF}=[ウ]+\sqrt{[エ]}$である.

(3)$\mathrm{AO}=\sqrt{[オ]}+\sqrt{[カ]}$である.ただし,$[オ]<[カ]$とする.

(4)$\displaystyle \mathrm{FG}=\frac{\sqrt{[キ]}+\sqrt{[ク]}}{[ケ]}$である.ただし,$[キ]<[ク]$とする.

(5)円$\mathrm{O}$の点$\mathrm{H}$を含まない弧$\mathrm{FG}$と線分$\mathrm{AF}$および線分$\mathrm{AG}$で囲まれた図形の面積は
\[ [コ]+\sqrt{[サ]}+\frac{[シ]}{[ス]}\pi \]
である.
岩手県立大学 公立 岩手県立大学 2014年 第4問
以下の問いに答えなさい.

下図のように,外接円と内接円の中心が同一となる$\triangle \mathrm{ABC}$を考える.この中心を$\mathrm{O}$とし,$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$と$\triangle \mathrm{ABC}$の内接円との交点をそれぞれ$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.このとき,$\triangle \mathrm{ABC}$の内接円は$\triangle \mathrm{DEF}$の外接円にあたる.すなわち,$\triangle \mathrm{ABC}$の内心が$\triangle \mathrm{DEF}$の外心となっている.
(図は省略)
(1)$\triangle \mathrm{ABC}$および$\triangle \mathrm{DEF}$がいずれも正三角形であることを示しなさい.
(2)$\triangle \mathrm{ABC}$の外接円の半径$\mathrm{OA}$と$\triangle \mathrm{DEF}$の外接円の半径$\mathrm{OD}$との長さの比を求めなさい.
(3)ここで,改めて,$\triangle \mathrm{ABC}$を$(\triangle \mathrm{ABC})_1$,$\triangle \mathrm{DEF}$を$(\triangle \mathrm{ABC})_2$のように表し,一辺の長さが$a$である$(\triangle \mathrm{ABC})_1$の内接円をもとに$(\triangle \mathrm{ABC})_2$を描き,この$(\triangle \mathrm{ABC})_2$の内接円をもとに$(\triangle \mathrm{ABC})_3$を描くということを繰り返していく.このようにして,$(\triangle \mathrm{ABC})_n$を描いたとき,$(\triangle \mathrm{ABC})_n$の一辺の長さを$a$を用いて表しなさい.
横浜市立大学 公立 横浜市立大学 2014年 第1問
以下の問いに答えよ.

(1)$a,\ b,\ c$を相異なる実数とする.$x,\ y,\ z$に関する連立$3$元$1$次方程式
\[ \left\{ \begin{array}{l}
x-ay+a^2z=a^4 \\
x-by+b^2z=b^4 \\
x-cy+c^2z=c^4
\end{array} \right. \]
を解きたい.その解を基本対称式
\[ \begin{array}{l}
A=a+b+c \\
B=ab+bc+ca \\
C=abc
\end{array} \]
を用いて表せ.
(2)平面上に$3$点$\mathrm{A}(2,\ 3)$,$\mathrm{B}(1,\ 2)$,$\mathrm{C}(3,\ 1)$をとる.このとき,三角形$\mathrm{ABC}$の内心を求めよ.
(3)行列$A$を
\setstretch{2.5}
\[ A=\left( \begin{array}{rr}
\displaystyle\frac{\sqrt{2+\sqrt{2}}}{2} & -\displaystyle\frac{\sqrt{2-\sqrt{2}}}{2} \\
\displaystyle\frac{\sqrt{2-\sqrt{2}}}{2} & \displaystyle\frac{\sqrt{2+\sqrt{2}}}{2}
\end{array} \right) \]
\setstretch{1.4}
とおく.このとき,行列の和
\[ A+A^2+\cdots +A^7+A^8 \]
を,(簡潔な形で)求めよ.
スポンサーリンク

「内心」とは・・・

 まだこのタグの説明は執筆されていません。