タグ「内側」の検索結果

1ページ目:全10問中1問~10問を表示)
沖縄国際大学 私立 沖縄国際大学 2015年 第2問
下記に示す三角形$\mathrm{ABC}$は,$\mathrm{AB}=6$,$\mathrm{BC}=4$,$\mathrm{CA}=4$であり,内側に円が接している.$\angle \mathrm{BAC}=\theta$とする.このとき,以下の各問いに答えなさい.
(図は省略)

(1)$\cos \theta$の値を求めよ.
(2)三角形$\mathrm{ABC}$の面積を求めよ.
(3)内接円の半径$r$の長さを求めよ.
沖縄国際大学 私立 沖縄国際大学 2015年 第5問
以下の各問いに答えなさい.

(1)底面の直径が$6$,高さが$9$の直円錐がある.直円錐の内側に球を配置した.直円錐の底面と側面に球が接しているとき,この内接球の半径$r$を求めよ.
(2)線分$\mathrm{AB}$上に円$\mathrm{O}_1$と円$\mathrm{O}_2$が接しており,かつ,円$\mathrm{O}_1$と円$\mathrm{O}_2$は外接している.線分$\mathrm{AB}$と円$\mathrm{O}_1$の接点を$\mathrm{P}$,線分$\mathrm{AB}$と円$\mathrm{O}_2$の接点を$\mathrm{Q}$とする.このとき,円$\mathrm{O}_1$の半径を$7$,$\mathrm{PQ}=2 \sqrt{7}$における円$\mathrm{O}_2$の半径$r$を求めよ.ただし,円$\mathrm{O}_2$の半径は円$\mathrm{O}_1$より小さいとする.
(3)三階建ての建物がある.図のように$3$階を$\mathrm{AB}$,$2$階を$\mathrm{CD}$,$1$階を$\mathrm{EF}$としたとき,$3$階から$1$階の通路を$\mathrm{AP}$,$1$階から$2$階の通路を$\mathrm{PD}$とする.このとき,点$\mathrm{P}$を$\mathrm{EF}$上で動かしたとき,$\mathrm{AP}$と$\mathrm{PD}$の通路の長さの合計が最も短くなるときの値($\mathrm{AP}+\mathrm{PD}$)を求めよ.ただし,$\mathrm{AB}=\mathrm{CD}=\mathrm{EF}=8$,$\mathrm{AC}=\mathrm{CE}=\mathrm{BD}=\mathrm{DF}=2$とする.
(図は省略)
北九州市立大学 公立 北九州市立大学 2015年 第4問
原点を$\mathrm{O}$として$3$点$\mathrm{A}(0,\ 1,\ 4)$,$\mathrm{B}(1,\ -1,\ 0)$,$\mathrm{C}(-1,\ 3,\ 2)$をとる.以下の問いに答えよ.

(1)点$\mathrm{A}$から直線$\mathrm{BC}$に引いた垂線と直線$\mathrm{BC}$との交点を$\mathrm{P}$とする.点$\mathrm{P}$の座標を求めよ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)線分$\mathrm{AP}$の中点を$\mathrm{Q}$とする.点$\mathrm{Q}$を中心とする半径$\mathrm{AQ}$の球面$\mathrm{S}$を考える.原点$\mathrm{O}$は球面$\mathrm{S}$の内側にあるか外側にあるかを答えよ.
(4)球面$\mathrm{S}$と線分$\mathrm{AB}$との交点のうち,点$\mathrm{A}$と異なる交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標を求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

三角形$\mathrm{ABC}$において$\mathrm{AB}=\mathrm{AC}=1$,$\angle \mathrm{BAC}=2\theta$とする.

(1)三角形$\mathrm{ABC}$の内接円$C_1$の半径を$R_1(\theta)$とする.$R_1(\theta)$を$\theta$の式で表すと$R_1(\theta)=[あ]$である.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_1(\theta)$が最大値をとるような$\theta$の値を$\theta_1$とすると
\[ \sum_{k=1}^\infty \sin^k \theta_1=[い] \]
が成り立つ.
(2)三角形$\mathrm{ABC}$の内側に次のように円$C_2$,$C_3$,$\cdots$,$C_n$,$\cdots$を作る.円$C_1$の外側にあって円$C_1$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_2$とし,円$C_1$,$C_2$の外側にあって円$C_2$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_3$とする.以下同様に自然数$n \geqq 2$に対して,円$C_1$,$C_2$,$\cdots$,$C_{n-1}$の外側にあって円$C_{n-1}$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_n$とする.$C_n$の半径$R_n(\theta)$を$\theta$と$n$の式で表すと$R_n(\theta)=[う]$である.
(3)$x$の$2$次式$g_n(x)=[え]$に対して
\[ \frac{d}{d\theta}\log R_n(\theta)=-\frac{g_n(\sin \theta)}{\sin \theta \cos \theta} \]
が成り立つ.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_n (\theta)$が最大値をとるような$\theta$の値を$\theta_n$とすると$\sin \theta_n=[お]$である.
(4)$\displaystyle \lim_{n \to \infty} n \sin \theta_n=[か]$である.このことから,$\theta=\theta_n$のときの円$C_n$の面積$S_n$に対して$\displaystyle \lim_{n \to \infty}n^2S_n=[き]$が成り立つ.
岐阜薬科大学 公立 岐阜薬科大学 2014年 第4問
$xy$平面において,原点$\mathrm{O}$を中心とする半径$4$の円$C$の内側を半径$1$の円$C^\prime$が内接しながら滑ることなく転がるとき,円$C^\prime$上の点$\mathrm{P}$が描く曲線を$X$とする.ただし,点$\mathrm{P}$のはじめの位置は点$\mathrm{P}_0(4,\ 0)$とする.円$C^\prime$の中心$\mathrm{O}^\prime$が原点$\mathrm{O}$の周りを$\theta$だけ回転したときの点$\mathrm{P}$の座標を$(x,\ y)$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OO}^\prime}$の成分を$\theta$を用いて表せ.
(2)$x,\ y$を$\theta$を用いて表せ.
(3)点$\mathrm{P}$における曲線$X$の接線と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とするとき,線分$\mathrm{QR}$の長さは一定であることを示せ.ただし,点$\mathrm{P}$は座標軸上の点ではないものとする.
豊橋技術科学大学 国立 豊橋技術科学大学 2013年 第2問
図に示したように第$1$象限内に原点を頂点の一つとして有する \\
一辺の長さが$a$である正三角形$\mathrm{OAB}$がある.この図形に関す \\
る以下の問いに答えよ.ただし,線分$\mathrm{OA}$と$x$軸とのなす角を \\
$15^\circ$とする.また,三角関数を使用する場合,三角関数は数値 \\
化すること.
\img{410_1079_2013_1}{32}

(1)三角形$\mathrm{OAB}$の面積を求めよ.
(2)三角形の二つの頂点$\mathrm{A}$,$\mathrm{B}$の座標を求めよ.
(3)直線$\mathrm{OA}$,$\mathrm{OB}$および$\mathrm{AB}$の方程式を求めよ.
(4)この三角形$\mathrm{OAB}$の内部にあり,三角形に内側で接する円の方程式を求めよ.また,この円の面積を求めよ.
東京理科大学 私立 東京理科大学 2012年 第4問
平面上で点$\mathrm{O}$を中心とする半径$2$の円の内側に$\mathrm{OP}=1$となる点$\mathrm{P}$をとる.点$\mathrm{P}$で垂直に交わる$2$直線と円との交点を反時計回りの順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.

(1)$\mathrm{O}$と直線$\mathrm{AC}$との距離が$\displaystyle \frac{3}{5}$のとき,四角形$\mathrm{ABCD}$の面積は
\[ \frac{[ア][イ]}{[ウ][エ]} \sqrt{[オ][カ]} \]
である.
(2)$\mathrm{O}$と直線$\mathrm{AC}$との距離が$h$のとき,四角形$\mathrm{ABCD}$の面積を$S$とおくと,
\[ S^2=-[キ]h^4+[ク]h^2+[ケ][コ] \]
であり,$S$の最大値は$[サ]$,最小値は$[シ] \sqrt{[ス]}$である.
(3)三角形$\mathrm{ABP}$の面積を$S_1$,三角形$\mathrm{CDP}$の面積を$S_2$とおくと,
\[ S_1 \cdot S_2=\frac{[セ]}{[ソ]} \]
が成り立ち,$S_1+S_2$の最小値は$[タ]$であり,最大値は$[チ]$である.
長崎大学 国立 長崎大学 2011年 第2問
$3$辺の長さが$\mathrm{AB}=4,\ \mathrm{BC}=3,\ \mathrm{CA}=5$である直角三角形$\mathrm{ABC}$と,その内側にあって$2$辺$\mathrm{AB}$および$\mathrm{AC}$に接する円$\mathrm{O}$を考える.この円の半径を$r$とし,中心$\mathrm{O}$から$\mathrm{AB}$に引いた垂線と$\mathrm{AB}$との交点を$\mathrm{H}$とする.また,ベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$と同じ向きで大きさが$1$のベクトルを,それぞれ$\overrightarrow{u},\ \overrightarrow{v}$とし,$\overrightarrow{\mathrm{AH}}=t \overrightarrow{u} \ (t>0)$とする.次の問いに答えよ.

(1)直線$\mathrm{AO}$と辺$\mathrm{BC}$の交点を$\mathrm{M}$とするとき,ベクトル$\overrightarrow{\mathrm{AM}}$を$\overrightarrow{u}$と$\overrightarrow{v}$を用いて表せ.
(2)ベクトル$\overrightarrow{u},\ \overrightarrow{v}$の内積$\overrightarrow{u} \cdot \overrightarrow{v}$を求め,ベクトル$\overrightarrow{\mathrm{AO}}$と$\overrightarrow{\mathrm{HO}}$を,それぞれ$\overrightarrow{u},\ \overrightarrow{v}$および$t$を用いて表せ.また,円$\mathrm{O}$の半径$r$を$t$で表せ.
(3)円$\mathrm{O}$が辺$\mathrm{BC}$にも接するとき,その中心を$\mathrm{I}$とする.すなわち,$\mathrm{I}$は三角形$\mathrm{ABC}$の内心である.そのときの$t$の値と,内接円$\mathrm{I}$の半径を求めよ.
(4)円$\mathrm{O}$と内接円$\mathrm{I}$が共有点をもたないような$t$の範囲を求めよ.
早稲田大学 私立 早稲田大学 2011年 第2問
$xy$-平面上の円$C: x^2+y^2=1$の内側を半径$\displaystyle\frac{1}{2}$の円$D$が$C$に接しながらすべらずに転がる.時刻$t$において$D$は点$(\cos\, t,\ \sin\, t)$で$C$に接しているとする.$D$の周上の点$\mathrm{P}$の軌跡について考える.ある時刻$t_0$において点$\mathrm{P}$が$\displaystyle(\frac{1}{4},\ \frac{\sqrt{3}}{4})$にあり,$D$の中心が第$2$象限にあるとする.以下の問に答えよ.

(1)時刻$t_0$における$D$の中心の座標を求めよ.
(2)第$1$象限において,点$\mathrm{P}$が$C$上にあるときの$\mathrm{P}$の座標を求めよ.
(3)点$\mathrm{P}$の軌跡を$xy$-平面上に図示せよ.
横浜市立大学 公立 横浜市立大学 2010年 第2問
座標平面上の原点$\mathrm{O}$を中心とする半径$2$の円を$C$とする.$\mathrm{O}$を始点とする半直線上の二点$\mathrm{P}$,$\mathrm{Q}$について$\mathrm{OP} \cdot \mathrm{OQ}=4$が成立するとき,$\mathrm{P}$と$\mathrm{Q}$は$C$に関して対称であるという(下の図では,$\mathrm{P}$は$C$の内側に取ってある).以下の問いに答えよ.
(図は省略)

(1)点$\mathrm{P}(x,\ y)$の$C$に関して対称な点$\mathrm{Q}$の座標を$x,\ y$を用いて表せ.
(2)点$\mathrm{P}(x,\ y)$が原点を除いた曲線
\[ (x-2)^2+(y-3)^2=13,\quad (x,\ y) \neq (0,\ 0) \]
上を動くとき,$\mathrm{Q}$の軌跡を求めよ.
スポンサーリンク

「内側」とは・・・

 まだこのタグの説明は執筆されていません。