タグ「共通」の検索結果

7ページ目:全75問中61問~70問を表示)
徳島大学 国立 徳島大学 2011年 第4問
$a>0$とし,$n=1,\ 2,\ 3,\ \cdots$とする.曲線$C_1$を$\displaystyle y=ax^2+n-\frac{1}{2}$,曲線$C_2$を$y=\log x$とする.$C_1$と$C_2$が共有点$(p,\ q)$をもち,この点で共通の接線をもつとする.

(1)$a$と$(p,\ q)$を$n$で表せ.
(2)$C_1,\ C_2$,$x$軸および$y$軸で囲まれた部分の面積$S_n$を$n$で表せ.
(3)(2)で求めた$S_n$に対し,$\displaystyle \lim_{n \to \infty}\frac{S_{n+1}}{S_n}$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第5問
$a$を$0$でない実数とする.$2$つの異なる曲線
\[ C_1: y=x^2-2x+5,\quad C_2: y=ax^2+(1-3a)x+\frac{13}{8}\]
は,ある共有点$\mathrm{P}$で共通な接線$\ell$をもつ.さらに,曲線$C_2$上の点$\mathrm{Q}$において$\ell$以外の接線を,$\ell$と点$\mathrm{R}$で直交するように引く.このとき$a$の値は$\displaystyle \frac{[ソ]}{[タ]}$であり,共通接線$\ell$の方程式は$[チ]x-[ツ]y+[テ]=0$である.また,曲線$C_2$は$\triangle \mathrm{PQR}$の面積を$1:[ト]$に分ける.ただし,$[タ]$から$[ト]$はできる限り小さい自然数で答えること.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~サに当てはまる数または式を記入せよ.

(1)$2$つの異なる$2$次方程式$x^2+3px+4=0$,$x^2+3x+4p=0$が共通の実数解を持つとき,$p$の値は$[ア]$である.ただし,$p \neq 1$とする.
(2)三角形$\mathrm{ABC}$において,$\mathrm{BC}=6$,$\mathrm{CA}=4$,$\displaystyle \cos C=\frac{1}{3}$であるとき,$\sin A$の値は$[イ]$である.
(3)不等式$|2x|+|x-4|<6$を解くと,$[ウ]$となる.
(4)実数$x,\ y$が$(3+2i)x+(1-i)y+13+2i=0$を満たすとき,$x=[エ]$,$y=[オ]$である.ただし,$i$は虚数単位とする.
(5)点$\mathrm{Q}$が円$x^2+y^2=4$上を動くとき,点$\mathrm{P}(3,\ 0)$と点$\mathrm{Q}$の中点の軌跡の方程式は$[カ]$である.
(6)$\displaystyle \cos \theta=\frac{1}{5}$のとき,$\tan \theta=[キ]$である.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(7)$a=\log_{10}2$,$b=\log_{10}3$とするとき,$\displaystyle \log_{100}\frac{125}{9}$を$a,\ b$を用いて表すと,$[ク]$となる.
(8)等式$\displaystyle f(x)=x^2+4x-\int_0^1 f(t) \, dt$を満たす関数$f(x)$は,$[ケ]$である.
(9)数列$2,\ 4,\ 9,\ 17,\ 28,\ 42,\ \cdots$の第$n$項を$n$を用いて表すと,$[コ]$となる.
\mon 座標空間上に$3$つの点,$\mathrm{A}(1,\ 3,\ -1)$,$\mathrm{B}(-1,\ 2,\ 2)$,$\mathrm{C}(2,\ 0,\ 1)$をとるとき,三角形$\mathrm{ABC}$の重心の座標は$[サ]$である.
上智大学 私立 上智大学 2011年 第4問
実数$x$に対し,$x$を超えない最大の整数を$[x]$で表す.

自然数$n=1,\ 2,\ 3,\ \cdots$に対して,$n$が$[\sqrt{n}]$の整数倍で表せるとき,そのような$n$を小さいものから順に並べて
\[ n_1,\ n_2,\ n_3,\ \cdots \]
とする.

(1)$n_5=[マ]$である.
(2)自然数$p$に対して,$[\sqrt{n}]=p$をみたす自然数$n$の集合を$M_p$とする.$M_p$の要素で$p$の整数倍であるものは全部で$[ミ]$個ある.
(3)自然数$m$に対して,
\[ S_m=\sum_{i=1}^m n_i \]
とおく.$k \geqq 1$のとき,$S_{3k-2}$,$S_{3k-1}$,$S_{3k}$はいずれも$k$の多項式で,それぞれの$k$の$1$次の項の係数は$S_{3k-2}$,$S_{3k-1}$,$S_{3k}$の順に$[ム]$,$[メ]$,$[モ]$である.また,$S_{3k-2}$,$S_{3k-1}$,$S_{3k}$は共通の因数$\displaystyle \left( k+[ヤ] \right)$をもつ.

(4)$\displaystyle \lim_{m \to \infty} \frac{\sqrt[3]{S_m}}{m}=\frac{[ユ]}{[ヨ]}$である.
関西学院大学 私立 関西学院大学 2011年 第1問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)$m$を実数とするとき,$2$つの$2$次方程式
$2x^2+8x+2m=0$ $\cdots\cdots①$
$x^2+mx+2m-4=0$ $\cdots\cdots②$
が共通の解をもつのは,$m=[$*$]$または$m=[$**$]$のときである.ただし,$[$*$]>[$**$]$とする.$m=[$*$]$のとき,$①$と$②$の共通の解は$x=[ ]$であり,$m=[$**$]$のとき,$①$と$②$の共通の解は$x=[ ]$である.
(2)座標平面上に点$\mathrm{P}$がある.サイコロを投げて,偶数の目がでたら$\mathrm{P}$は$x$軸の正の方向に$1$動き,$1$または$5$の目がでたら$y$軸の正の方向に$1$動き,$3$の目がでたときには動かないとする.最初$\mathrm{P}$が原点にあったとする.サイコロを$5$回投げた後,$\mathrm{P}$が座標$(4,\ 1)$にある確率は$[ ]$,$(3,\ 1)$にある確率は$[ ]$,$(2,\ 1)$にある確率は$[ ]$である.また,$n$を$3$以上の自然数とし,サイコロを$n$回投げた後,$\mathrm{P}$が$(n-3,\ 1)$にある確率は$[ ]$である.
富山県立大学 公立 富山県立大学 2011年 第3問
$2$つの曲線$C_1:y=x \log x$,$C_2:y=2x \log x$について,次の問いに答えよ.ただし,$x>0$である.

(1)$C_1$と$C_2$に共通する接線$\ell$の方程式を求めよ.
(2)$C_1,\ C_2$および$\ell$で囲まれた部分の面積$S$を求めよ.
島根大学 国立 島根大学 2010年 第3問
$a \geqq 0$とする.円$C_1:x^2+y^2=1$と円$C_2:x^2+y^2-10x+20-a=0$について,次の問いに答えよ.

(1)$C_1$上の点Pと$C_2$上の点Qとの距離PQの最小値を$a$を用いて表せ.
(2)$a=11$のとき,2つの円$C_1$と$C_2$の共通接線をすべて求めよ.
島根大学 国立 島根大学 2010年 第1問
数列$\{a_n\}$を初項3,公比3の等比数列とし,数列$\{b_n\}$を初項11,公差8の等差数列とする.$\{a_n\}$と$\{b_n\}$に共通に含まれる項を小さいものから順に並べて得られる数列$\{c_n\}$の一般項を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第1問
次の問いに答えよ.

(1)円$x^2+y^2=1$と放物線$y=x^2+5$との共通の接線のうち,円と第$1$象限で接する接線の方程式を求めよ.
(2)$n \geqq 2$であるような自然数$n$に対して
\[ 1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\cdots +(n-1) \cdot n \cdot (n+1)=(1+2+3+\cdots +n)(2+3+\cdots +n) \]
が成り立つことを示せ.
(3)関数$\displaystyle f(x)=\frac{\cos x}{\sqrt{1+\cos^2 x}} \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{3}{2}\pi \right)$の増減を調べ,最大値と最小値を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第5問
次の問いに答えよ.

(1)$1$から$9$までの整数がひとつずつ書かれた$9$個の玉が入っている袋の中から玉を$3$個取り出す.取り出した玉に書かれた整数の和が$12$以上となる確率を求めよ.
(2)円$x^2+y^2=1$と放物線$y=x^2+5$との共通の接線のうち,円と第$1$象限で接する接線の方程式を求めよ.
(3)平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して$|\overrightarrow{\mathrm{AB}}|=1$,$|\overrightarrow{\mathrm{AC}}|=5$,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=3$である.$|\overrightarrow{\mathrm{BC}}|$を求めよ.ただし,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$は$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の内積とする.
スポンサーリンク

「共通」とは・・・

 まだこのタグの説明は執筆されていません。