タグ「共通」の検索結果

6ページ目:全75問中51問~60問を表示)
南山大学 私立 南山大学 2012年 第2問
$a,\ b$を正の定数とし,関数$f(x)=2x^3-3ax^2$と座標平面上の$2$つの曲線$C_1:y=f(x)$,$C_2:y=f(x)+b$を考える.

(1)$f(x)$の極大値と極小値を求めよ.
(2)区間$0 \leqq x \leqq 5$における$f(x)$の最小値を$a$で表せ.
(3)$a=1,\ b=5$として,同一平面上に$C_1$と$C_2$を図示せよ.
(4)$1$つの直線が$C_1$,$C_2$の両方の接線であるとき,その直線を$C_1$,$C_2$の共通接線という.$a=1$のとき,$C_1$と$C_2$に,傾き$12$の共通接線があるように$b$の値を定めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
$a,\ b$を実数として,$x$の$4$次関数$f(x)=x^4-ax^2+bx$を考える.次の問いに答えよ.

(1)$s,\ t$を異なる実数とする.曲線$y=f(x)$の,$x=s$における接線の傾きと,$x=t$における接線の傾きが等しいとき,$a$を$s$と$t$を用いて表せ.
(2)曲線$y=f(x)$が異なる$2$点で共通の接線$\ell$をもつとし,その接点の$x$座標の一つを$s$とする.

(i) $a$を$s$を用いて表せ.
(ii) $\ell$の方程式を,$a$と$b$を用いて表せ.

(3)関数$f(x)$が極大値をもつための必要十分条件を$a$と$b$に関する不等式で与えよ.
神奈川大学 私立 神奈川大学 2012年 第1問
次の空欄を適当に補え.

(1)放物線$\displaystyle y=x^2-x+\frac{7}{4}$の頂点の座標は$[ア]$である.
(2)多項式$P(x)$を$x-2$で割ると余りは$3$であり,$x+3$で割ると余りは$-7$である.また,$P(x)$を$(x-2)(x+3)$で割ると商は$x+1$であるが,割り切れない.この$P(x)$を$x+1$で割ると余りは$[イ]$である.
(3)赤い玉$2$個,黄色い玉$3$個,青い玉$4$個が入っている袋から,よくかき混ぜて玉を同時に$3$個取り出すとき,$3$個の玉の色が$2$種類である確率は$[ウ]$である.
(4)$2$つの曲線$y=a-x^2$,$y=x^2+2ax+b$が$x=3$で共通の接線をもつような$a,\ b$の値は$a=[エ]$,$b=[オ]$である.
福岡大学 私立 福岡大学 2012年 第1問
次の$[ ]$をうめよ.

(1)どのような実数$x$に対しても,不等式$x^2+ax+a>-2x^2+x+1$が成り立つ定数$a$の値の範囲は$[ ]$である.
また,$2$つの放物線$y=x^2+ax+a$と$y=-2x^2+x+1$が点$\mathrm{A}$を共有し,その点で共通な接線をもつとき,点$\mathrm{A}$の座標は$[ ]$である.
(2)$a=3^{96}$のとき,$\sqrt[3]{a}$は$[ ]$桁の整数である.また,$\displaystyle \frac{1}{\sqrt{a}}$は,小数第$[ ]$位に初めて$0$でない数が現れる.ただし,$\log_{10}3=0.4771$とする.
(3)$0 \leqq x \leqq \pi$のとき,方程式$\displaystyle \sin x+\cos x+\sin 2x=-\frac{1}{2}$の解は,$x=[ ]$である.また,$\displaystyle -\frac{\pi}{2}<y<\frac{\pi}{2}$のとき,$\displaystyle \sin y+\sqrt{3} \cos y+4 \cos^2 \left( y+\frac{\pi}{3} \right)=4$の解は,$y=[ ]$である.
昭和大学 私立 昭和大学 2012年 第1問
次の各問に答えよ.

(1)$0 \leqq x<2\pi$のとき,次の不等式を解け.
\[ 4 \sin^2 x+(2-2 \sqrt{2}) \cos x+\sqrt{2}-4 \geqq 0 \]
(2)$\{a_n\} (n \geqq 1)$は初項$3$,公差$4$の等差数列,$\{b_m\} (m \geqq 1)$は初項$1000$,公差$-5$の等差数列とする.

(i) $2$つの等差数列の共通項の個数を求めよ.
(ii) $2$つの等差数列の共通項の総和を求めよ.

(3)$3$人がじゃんけんをして,$1$人だけ勝者を決める.$3$人はそれぞれグー,チョキ,パーを同じ確率で出すとする.勝者がいない場合は再びじゃんけんをする.勝者が$2$人の場合はその$2$人でじゃんけんをする.$2$人でじゃんけんをしたとき,勝者がいない場合は再びその$2$人でじゃんけんをする.

(i) $1$回目のじゃんけんで勝者がいない確率を求めよ.
(ii) $2$回じゃんけんをしても,勝者が$1$人に決まらない確率を求めよ.
(iii) $n$は正の整数とする.$n$回じゃんけんを続けても勝者が$1$人に決まらない確率を求めよ.
県立広島大学 公立 県立広島大学 2012年 第4問
$m$を定数とし,2つの曲線
\[ y=f(x)=-x^2+mx-3,\quad y=g(x)=x^3-x \]
が,点A$(a,\ f(a))$を通り,Aで共通の接線$\ell$をもつ.次の問いに答えよ.

(1)$y=g(x)$のグラフをかけ.
(2)$a,\ m$の値と,接線$\ell$の方程式を求めよ.
(3)積分$\displaystyle \int_0^3 |f(x)| \, dx$の値を求めよ.
九州歯科大学 公立 九州歯科大学 2012年 第2問
$A,\ B,\ C$を$A>B>C>0$をみたす定数とする.$3$つの$2$次方程式
\[ Ax^2-2Bx+C=0,\quad -2Bx^2+Cx+A=0,\quad Cx^2+Ax-2B=0 \]
が共通の実数解$\gamma$をもつとき,次の問いに答えよ.

(1)$B$を$A$と$C$を用いて表せ.
(2)$Ax^2-2Bx+C=0$の$2$つの解を$\alpha_1,\ \beta_1$とする.$\alpha_1>\beta_1$とするとき,$\alpha_1$の値を求めよ.また,$\beta_1$を$A$と$C$を用いて表せ.
(3)$Cx^2+Ax-2B=0$の$2$つの解を$\alpha_2,\ \beta_2$とする.$\alpha_2>\beta_2$とするとき,$\alpha_2$の値を求めよ.また,$\beta_2$を$A$と$C$を用いて表せ.
(4)$-2Bx^2+Cx+A=0$の$\gamma$と異なる解$\theta$を$A$と$C$を用いて表せ.
北九州市立大学 公立 北九州市立大学 2012年 第1問
初項が$5$で,初項から第$5$項までの和が$45$となる等差数列を$\{a_n\}$とする.以下の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)数列$\{a_n\}$の初項から第$n$項までの和$S_n$を求めよ.
(3)$a_1,\ a_2,\ a_3,\ \cdots,\ a_n$の中から異なる$2$つの項を取り出して作った積すべての和$T_n$を求めよ.
(4)$a_2 \leqq b_2 \leqq a_3$,$a_6 \leqq b_4 \leqq a_7$,$a_7 \leqq b_5 \leqq a_8$を満たすすべての等差数列$\{b_n\}$の一般項を求めよ.ただし,数列$\{b_n\}$の初項と公差は自然数とする.
(5)数列$\{a_n\}$と$(4)$で求めたすべての数列$\{b_n\}$に共通に現れる数を小さい方から順に並べてできる数列$\{c_n\}$の一般項を求めよ.
横浜国立大学 国立 横浜国立大学 2011年 第4問
$xy$平面上の2曲線$\displaystyle C_1 : y = \frac{\log x}{x}$と$C_2 : y = ax^2$は点Pを共有し,Pにおいて共通の接線をもっている.ただし,$a$は定数とする.次の問いに答えよ.

(1)関数$\displaystyle y = \frac{\log x}{x}$の増減,凹凸,変曲点を調べ,$C_1$の概形を描け.ただし,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$は証明なしに用いてよい.
(2)Pの座標および$a$の値を求めよ.
(3)不定積分$\displaystyle \int \left( \frac{\log x}{x} \right)^2 \, dx$を求めよ.
(4)$C_1,\ C_2$および$x$軸で囲まれる部分を,$x$軸のまわりに1回転してできる立体の体積$V$を求めよ.
徳島大学 国立 徳島大学 2011年 第3問
$a>0$とし,$n=1,\ 2,\ 3,\ \cdots$とする.曲線$C_1$を$\displaystyle y=ax^2+n-\frac{1}{2}$,曲線$C_2$を$y=\log x$とする.$C_1$と$C_2$が共有点$(p,\ q)$をもち,この点で共通の接線をもつとする.

(1)$a$と$(p,\ q)$を$n$で表せ.
(2)$C_1,\ C_2$,$x$軸および$y$軸で囲まれた部分の面積$S_n$を$n$で表せ.
(3)(2)で求めた$S_n$に対し,$\displaystyle \lim_{n \to \infty}\frac{S_{n+1}}{S_n}$を求めよ.
スポンサーリンク

「共通」とは・・・

 まだこのタグの説明は執筆されていません。