タグ「共通」の検索結果

5ページ目:全75問中41問~50問を表示)
北海道薬科大学 私立 北海道薬科大学 2013年 第3問
$2$点$\mathrm{A}(2,\ 6)$,$\mathrm{B}(6,\ 2)$を結ぶ直線$\mathrm{AB}$の中点$\mathrm{P}$と原点$\mathrm{O}$を通る直線$\mathrm{OP}$がある.

(1)点$\mathrm{P}$の座標は$([ア],\ [イ])$であり,直線$\mathrm{OP}$の傾きは$[ウ]$である.
(2)$x$の$2$次関数のグラフで定める$2$つの放物線$C_1$と$C_2$が,点$\mathrm{P}$で共通接線$\mathrm{OP}$をもち,さらに$C_1$は点$\mathrm{A}$,$C_2$は点$\mathrm{B}$を通るとすると

$C_1$は$y=x^2+[エオ]x+[カキ]$
$C_2$は$y=[ク]x^2+[ケ]x+[コサシ]$

となる.
久留米大学 私立 久留米大学 2013年 第1問
$2$つの曲線$y=2x^2-2$と$y=2x^2-4x+2$が共通の接線をもつとき,接線の方程式は$y=[$1$]$,$2$つの接点の$y$座標は$[$2$]$であり,$2$つの曲線と接線とで囲まれた部分の面積は$[$3$]$となる.
成城大学 私立 成城大学 2013年 第2問
円に内接する三角形$\mathrm{ABC}$があり,$\mathrm{BC}=a$,$\mathrm{CA}=b$,$\mathrm{AB}=c$とする($a>b$,$b<c$).下図のように,円周上に$\mathrm{D}$を,$\angle \mathrm{DBA}=\angle \mathrm{ABC}$となるようにとり,$\mathrm{BD}$を延長した直線と$\mathrm{CA}$を延長した直線が交わる点を$\mathrm{P}$とする.$a,\ b,\ c$を用いた式で空欄$[ア]$~$[コ]$を埋めよ.

$\mathrm{DP}$上に点$\mathrm{Q}$を$\angle \mathrm{DQA}=\angle \mathrm{BAC}$となるようにとる.四角形$\mathrm{ADBC}$は円に内接しているので,$\angle \mathrm{BDA}$と$\angle \mathrm{BCA}$の和は${180}^\circ$であるから,$\angle \mathrm{QDA}=\angle \mathrm{BCA}$であり,$\triangle \mathrm{QAD}$と$\triangle \mathrm{ABC}$は相似である.また,$\mathrm{AD}=[ア]$だから,$\mathrm{QD}=[イ]$である.
$\angle \mathrm{BQA}=\angle \mathrm{BAC}$,$\angle \mathrm{QBA}=\angle \mathrm{ABC}$であるから,$\triangle \mathrm{QBA}$と$\triangle \mathrm{ABC}$は相似であり,よって$\mathrm{QB}=[ウ]$となり,$\mathrm{BD}=\mathrm{QB}-\mathrm{QD}$だから,$\mathrm{BD}=[エ]$となる.
また,$\angle \mathrm{QDA}=\angle \mathrm{BCA}$であり,$\angle \mathrm{P}$は共通より,$\triangle \mathrm{PAD}$と$\triangle \mathrm{PBC}$は相似であるから,$\mathrm{DP}:\mathrm{CP}=[オ]:[カ]$となる.$\mathrm{CP}=\mathrm{AP}+[キ]$より,$\mathrm{DP}=[ク] \mathrm{AP}+[ケ]$となる.方べきの定理より,$\mathrm{DP} \cdot \mathrm{BP}=\mathrm{AP} \cdot \mathrm{CP}$であり,これを$\mathrm{AP}$について解くと$\mathrm{AP}=[コ]$となる.
(図は省略)
玉川大学 私立 玉川大学 2013年 第2問
次の$[ ]$を埋めよ.

(1)方程式$9 \sin x-2 \cos^2 x-3=0 (0<x<\pi)$は
\[ [ア] \sin^2 x+[イ] \sin x-[ウ]=0 \]
となるから,解は$\displaystyle x=\frac{[エ]}{[オ]}\pi,\ \frac{[カ]}{[キ]}\pi$である.
(2)$a>0$,$b>0$のとき,$\displaystyle a+\frac{1}{a}$の最小値は$[ク]$で,$\displaystyle \left( a+\frac{2}{b} \right) \left( b+\frac{8}{a} \right)$の最小値は$[ケコ]$である.
(3)同じ大きさの白玉$6$個と赤玉$4$個が袋の中に入っている.この袋の中から同時に$3$個の玉をとりだして目印をつけてから袋にもどし,再び袋の中から$1$個の玉をとりだす.$2$回目にとりだされた玉が目印のついた白玉である確率は
\[ \frac{[サ]}{[シス]} \]
である.
(4)実数$x,\ y$が$x^2+y^2=1$を満たすとき,$2x+3y$の最大値は$\sqrt{[セソ]}$である.
(5)$x^{99}+x^{49}+1$を$x^2-1$で割った余りは,$[タ]x+[チ]$である.
(6)$2$つの方程式
\[ \left\{ \begin{array}{l}
2x^2+(2a+5)x+5a=0 \\
2x^2+3ax+16=0
\end{array} \right. \]
が共通の解をもてば,$a=[ツテ]$または$\displaystyle a=\frac{[トナ]}{[ニ]}$である.
早稲田大学 私立 早稲田大学 2013年 第1問
次の$[ ]$にあてはまる数または数式を記入せよ.

(1)$a,\ b$は定数で,$x$についての整式$x^3+ax+b$は${(x+1)}^2$で割り切れるとする.このとき,$a=[ ]$,$b=[ ]$である.
(2)$5$個の自然数の組$(a_1,\ a_2,\ a_3,\ a_4,\ a_5)$で,
\[ a_1=1,\quad a_n+1 \leqq a_{n+1} \leqq a_n+2 \quad (n=1,\ 2,\ 3,\ 4) \]
を満たすものは全部で$[ ]$組ある.
(3)$3$次関数$f(x)$は$x=1$と$x=2$で極値をとり,曲線$y=f(x)$と曲線$\displaystyle y=\frac{3x}{2 \sqrt{x^2+1}}+1$は点$(0,\ 1)$において共通の接線を持つとする.このとき,$f(x)=[ ]$である.
(4)ある花の$1$個の球根が$1$年後に$3$個,$2$個,$1$個,$0$個(消滅)になる確率はそれぞれ$\displaystyle \frac{3}{10}$,$\displaystyle \frac{2}{5}$,$\displaystyle \frac{1}{5}$,$\displaystyle \frac{1}{10}$であるとする.$1$個の球根が$2$年後に$2$個になっている確率は$[ ]$である.
大阪市立大学 公立 大阪市立大学 2013年 第1問
放物線$C_1:y=2x^2$と放物線$C_2:y=(x-a)^2+b$を考える.ただし,$a,\ b$は定数で,$a>0$とする.放物線$C_1$と$C_2$がともにある点$\mathrm{P}$を通り,点$\mathrm{P}$において共通の接線$\ell$をもつとする.また,点$\mathrm{P}$で$\ell$と直交する直線を$m$とし,$m$と放物線$C_1$,$C_2$との$\mathrm{P}$以外の交点を,それぞれ$\mathrm{Q}$,$\mathrm{R}$とする.次の問いに答えよ.

(1)$b$を$a$を用いて表せ.
(2)直線$m$の方程式,および,点$\mathrm{Q}$,点$\mathrm{R}$の$x$座標を$a$を用いて表せ.
(3)$\displaystyle a=\frac{1}{4}$のとき,放物線$C_1$と直線$m$で囲まれた部分の面積$S$を求めよ.
滋賀県立大学 公立 滋賀県立大学 2013年 第2問
$a,\ b,\ c,\ p,\ q$を実数とし,整式$f(x)=x^4+ax^3+bx^2+cx-1$を整式$g(x)=x^3+px^2+qx+2$で割った余りは$x^2+1$であるとする.

(1)$f(x)=0$と$g(x)=0$は実数の範囲に共通の解をもたないことを示せ.
(2)$f(x)=0$と$g(x)=0$が共通の解をもつとき,$f(x)$と$g(x)$を求めよ.
福島県立医科大学 公立 福島県立医科大学 2013年 第1問
以下の各問いに答えよ.

(1)座標平面上の直線$x+2y=6$上にあって,点$(2,\ -3)$との距離が最小になる点の座標を求めよ.
(2)座標平面上の曲線$C:x^2+xy+y^2=3$について,以下の問いに答えよ.

(i) 原点のまわりの${45}^\circ$の回転移動によって,$C$上の各点が移る曲線の方程式を求めよ.
(ii) 曲線$C$で囲まれた図形のうち,$y \geqq 0$の領域に含まれる部分の面積を求めよ.

(3)座標平面上において,曲線$C_1:y=x \log x (x \geqq 1)$と放物線$C_2:y=ax^2$がある点$\mathrm{P}$を共有し,$\mathrm{P}$において共通の接線$\ell$を持つものとする.

(i) $a$の値を求めよ.
(ii) $C_1$,$C_2$および$x$軸によって囲まれた図形の面積を$S_1$とし,$C_1$,$\ell$および$x$軸によって囲まれた図形の面積を$S_2$とする.$S_1,\ S_2$の値を求めよ.

(4)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$と$\angle \mathrm{B}$の大きさをそれぞれ$A$,$B$で表し,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$で表す.$\displaystyle \tan \theta=\frac{3}{4}$になる$\displaystyle \theta \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$について,$\displaystyle \frac{a}{c} \cos (B-\theta)+\frac{b}{c} \cos (A+\theta)$の値を求めよ.
(5)$n$は自然数とする.導関数の定義にしたがって,関数$f(x)=x^n$の導関数を求めよ.
(6)$n$は$2$以上の自然数とする.$\displaystyle \frac{1}{2^n}$は,小数第$(n-1)$位が$2$,小数第$n$位が$5$である小数第$n$位までの有限小数で表わされることを示せ.
山形大学 国立 山形大学 2012年 第2問
2曲線$C_1:y=(x-a)^2 \ (a \geqq 0)$,$C_2:y=-x^2+b \ (b \geqq 0)$を考える.このとき,次の問に答えよ.

(1)$a=1,\ b=1$のとき,$C_1$と$C_2$で囲まれた部分の面積を求めよ.
(2)$a=1,\ b=0$のとき,$C_1$と$C_2$の共通接線を求めよ.
(3)$C_1$と$C_2$が共有点を1つだけもつための条件を$a,\ b$で表せ.
(4)(3)の条件のもとでの$C_1$と$C_2$の共有点の軌跡を求めよ.
東京海洋大学 国立 東京海洋大学 2012年 第5問
曲線$C_1:y=\log x$と放物線$C_2:y=ax^2$(ただし,$a$は正の定数)を考える.

(1)$C_1$と$C_2$が共有点$\mathrm{P}$において共通接線をもつとき(すなわち,点$\mathrm{P}$における$C_1$と$C_2$の接線が同一のとき),$a$の値と$\mathrm{P}$の座標を求めよ.
(2)$(1)$のとき,$C_1,\ C_2$および$x$軸で囲まれた図形の面積を求めよ.
スポンサーリンク

「共通」とは・・・

 まだこのタグの説明は執筆されていません。