タグ「共通」の検索結果

4ページ目:全75問中31問~40問を表示)
立教大学 私立 立教大学 2014年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$1$でない実数$a$に対し,$f(x)=x^3+ax^2+x+1$,$g(x)=x^3+x^2+x+a$とする.方程式$f(x)=0$と$g(x)=0$がただ$1$つの共通解をもつならば,$a=[ア]$であり,$f(x)=0$のすべての解は$[イ]$である.
(2)$x>0$のとき,$f(x)=e^{-\sqrt{3}x} \sin x$の最大値は$[ウ]$であり,最小値は$[エ]$である.
(3)$\displaystyle z=\frac{1}{2}+\frac{\sqrt{3}}{2}i$とするとき,$z^{2014}=[オ]+[カ]i$である.ただし,$i$は虚数単位とする.
(4)$a,\ b$を$2$から$9$までの自然数とするとき,$a,\ b$の組$(a,\ b)$は$64$通りあるが,そのうち$\log_a b$が整数となるのは$[キ]$通りであり,整数でない有理数となるのは$[ク]$通りである.
(5)ベクトル$\overrightarrow{a},\ \overrightarrow{b}$は,$|\overrightarrow{a}|=|\overrightarrow{b}|=1$かつ$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b}=\frac{1}{3}$を満たす.このとき,ベクトル$\overrightarrow{c}=p \overrightarrow{a}+q \overrightarrow{b}$が$\displaystyle \overrightarrow{a} \cdot \overrightarrow{c}=\frac{5}{3}$,$\overrightarrow{b} \cdot \overrightarrow{c}=-3$を満たすならば,$p=[ケ]$,$q=[コ]$である.ただし,$p,\ q$は実数とする.
宮城大学 公立 宮城大学 2014年 第2問
次の空欄$[ア]$から$[ク]$にあてはまる数や式を書きなさい.

初項$2$,公差$3$の等差数列$\{a_n\}$と,初項$1$,公差$4$の等差数列$\{b_n\}$がある.このとき,それぞれの一般項を$n$を用いて表せば,
\[ a_n=[ア],\quad b_n=[イ] \]
である.
また,数列$\{a_n\}$と数列$\{b_n\}$に共通に含まれる項を順に並べると,次のような数列$\{c_n\}$が得られる.
\[ c_1=5,\quad c_2=[ウ],\quad c_3=[エ],\quad \cdots \]
したがって,数列$\{c_n\}$の一般項を$n$を用いて表せば,
\[ c_n=[オ] \]
となる.
また,数列$\{c_n\}$の第$p$項を$c_p$とするとき,数列$\{a_n\}$と数列$\{b_n\}$はともに項$c_p$を含む.よってそれぞれの項番号を自然数$p$を用いて表せば,数列$\{a_n\}$の場合は,
\[ n=[カ] \]
であり,数列$\{b_n\}$の場合は,
\[ n=[キ] \]
となる.よって,これらの項番号の差の絶対値を自然数$p$を用いて表せば,$[ク]$となる.
京都府立大学 公立 京都府立大学 2014年 第2問
定数$a$を正の実数とする.$2$つの放物線$C_1:y=2x^2+1$,$C_2:y=-\sqrt{2}(x+a)^2+1$がある.$C_1$,$C_2$の両方に接する直線を$C_1$,$C_2$の共通接線という.以下の問いに答えよ.

(1)$C_1$上の任意の点$\mathrm{P}$の$x$座標を$t$とする.点$\mathrm{P}$における$C_1$の接線の方程式を$t$を用いて表せ.
(2)$C_1$,$C_2$の共通接線がちょうど$2$本存在することを示せ.
(3)$C_1$,$C_2$の$2$本の共通接線と$C_1$とで囲まれた部分の面積を$a$を用いて表せ.
東北大学 国立 東北大学 2013年 第1問
$k$を実数とする.$3$次式$f(x)=x^3-kx^2-1$に対し,方程式$f(x)=0$の$3$つの解を$\alpha,\ \beta,\ \gamma$とする.$g(x)$は$x^3$の係数が$1$である$3$次式で,方程式$g(x)=0$の$3$つの解が$\alpha\beta,\ \beta\gamma,\ \gamma\alpha$であるものとする.

(1)$g(x)$を$k$を用いて表せ.
(2)$2$つの方程式$f(x)=0$と$g(x)=0$が共通の解をもつような$k$の値を求めよ.
鹿児島大学 国立 鹿児島大学 2013年 第1問
次の各問いに答えよ.

(1)四角形$\mathrm{ABCD}$において,線分$\mathrm{AC}$と線分$\mathrm{BD}$の交点を$\mathrm{P}$とし,$\angle \mathrm{DAC}=\angle \mathrm{CBD}$,$\mathrm{AC}=8$,$\mathrm{AP}=2$,$\mathrm{PD}=4$とする.このとき$\mathrm{BD}$の長さを求めよ.
(2)平面上で$2$つの円を考える.共通接線がちょうど$3$本引けるような$2$つの円の位置関係の例を図示せよ.また,$3$本の共通接線も描け.
(3)$3$個のさいころを同時に投げるとき,$3$個の目の積が$3$の倍数である確率を求めよ.
(4)$a,\ b$を実数とする.命題「$ab=0$ならば,$a=0$かつ$b=0$」の逆と対偶を書き,それぞれの真偽を答えよ.
鹿児島大学 国立 鹿児島大学 2013年 第1問
次の各問いに答えよ.

(1)四角形$\mathrm{ABCD}$において,線分$\mathrm{AC}$と線分$\mathrm{BD}$の交点を$\mathrm{P}$とし,$\angle \mathrm{DAC}=\angle \mathrm{CBD}$,$\mathrm{AC}=8$,$\mathrm{AP}=2$,$\mathrm{PD}=4$とする.このとき$\mathrm{BD}$の長さを求めよ.
(2)平面上で$2$つの円を考える.共通接線がちょうど$3$本引けるような$2$つの円の位置関係の例を図示せよ.また,$3$本の共通接線も描け.
(3)$3$個のさいころを同時に投げるとき,$3$個の目の積が$3$の倍数である確率を求めよ.
(4)$a,\ b$を実数とする.命題「$ab=0$ならば,$a=0$かつ$b=0$」の逆と対偶を書き,それぞれの真偽を答えよ.
鹿児島大学 国立 鹿児島大学 2013年 第1問
次の各問いに答えよ.

(1)四角形$\mathrm{ABCD}$において,線分$\mathrm{AC}$と線分$\mathrm{BD}$の交点を$\mathrm{P}$とし,$\angle \mathrm{DAC}=\angle \mathrm{CBD}$,$\mathrm{AC}=8$,$\mathrm{AP}=2$,$\mathrm{PD}=4$とする.このとき$\mathrm{BD}$の長さを求めよ.
(2)平面上で$2$つの円を考える.共通接線がちょうど$3$本引けるような$2$つの円の位置関係の例を図示せよ.また,$3$本の共通接線も描け.
(3)$3$個のさいころを同時に投げるとき,$3$個の目の積が$3$の倍数である確率を求めよ.
(4)$a,\ b$を実数とする.命題「$ab=0$ならば,$a=0$かつ$b=0$」の逆と対偶を書き,それぞれの真偽を答えよ.
南山大学 私立 南山大学 2013年 第2問
平面上に曲線$C_1:y=|x^2-2|$と円$C_2$がある.$C_1$と$C_2$は,点$\mathrm{A}(a,\ a^2-2)$で共通の接線$\ell$を持ち,点$\mathrm{B}(0,\ 2)$でも共通の接線を持つ.ただし,$a>2$とする.

(1)$C_1$を図示せよ.
(2)$C_1$と$\ell$が$\mathrm{A}$で接することを利用して,$\ell$の方程式を$a$を用いて表せ.
(3)$\mathrm{A}$を通り$\ell$に直交する直線の方程式を$a$を用いて表せ.
(4)$C_2$の方程式を求めよ.
南山大学 私立 南山大学 2013年 第2問
$xy$平面上に$3$つの放物線$C_1:y=x^2$,$C_2:y=bx^2 (0<b<1)$および$C_3$がある.$C_3$は$C_2$上の点$(1,\ b)$を頂点とし,点$(0,\ b-1)$を通り,上に凸である.また,$C_1$と$C_3$は,ただ$1$つの共有点$\mathrm{A}$を持ち,$\mathrm{A}$を通る共通の接線$\ell$を持つ.

(1)$b$の値と$C_3$の方程式を求めよ.
(2)$\mathrm{A}$の座標と$\ell$の方程式を求めよ.
(3)$C_1$,$\ell$および$y$軸で囲まれた部分の面積を$S$とし,$C_3$,$\ell$および$y$軸で囲まれた部分の面積を$T$とする.$S=T$が成り立つことを示せ.
甲南大学 私立 甲南大学 2013年 第2問
座標平面上に,$2$つの円$C_1:x^2+y^2=1$,$C_2:(x-2)^2+(y-1)^2=4$があり,$C_1$と$C_2$の共通接線を$n_1,\ n_2$(ただし$n_1$の傾きより$n_2$の傾きの方が大きい)とする.また,$C_1$と$C_2$の中心を結ぶ直線を$\ell$とし,$C_1$と$C_2$の$2$つの交点を結ぶ直線を$m$とする.このとき,以下の問いに答えよ.

(1)直線$\ell$の方程式,および$\ell$と$n_1$の交点の座標を求めよ.
(2)直線$n_1$と直線$\ell$とのなす角を$\displaystyle \alpha \left( \text{ただし} 0 \leqq \alpha \leqq \frac{\pi}{2} \right)$とし,$\tan \alpha$および$\tan 2\alpha$の値を求めよ.
(3)直線$n_2$の方程式を求めよ.
(4)直線$m$の方程式を求めよ.
(5)$3$つの直線$n_1,\ n_2,\ m$で囲まれた三角形の面積を求めよ.
スポンサーリンク

「共通」とは・・・

 まだこのタグの説明は執筆されていません。