タグ「共通」の検索結果

2ページ目:全75問中11問~20問を表示)
東京海洋大学 国立 東京海洋大学 2015年 第3問
$20$枚のカードに$1$から$20$までの自然数が$1$つずつ書かれている.この中からカードを$3$枚同時に取り出すとき,次の問に答えよ.

(1)$3$枚のカードに書かれた$3$つの自然数の積が$3$の倍数となる確率を求めよ.
(2)$3$枚のカードに書かれた$3$つの自然数の和が$3$の倍数となる確率を求めよ.
(3)$3$枚のカードに書かれた$3$つの自然数の最小公倍数が$10$以下になる確率を求めよ.ただし,$2$つ以上の自然数に共通な正の倍数のうちで最小のものを最小公倍数という.
東京学芸大学 国立 東京学芸大学 2015年 第3問
$a$は$0<a<1$を満たす実数とする.$2$つの曲線$y=a^x$,$y=\log_a x$が直線$y=x$上に共有点をもち,その共有点において共通の接線をもつとする.そのときの$a$の値および共通の接線の方程式を求めよ.
千葉大学 国立 千葉大学 2015年 第5問
$c$を実数とし,曲線$y=x^2+c \cdots①$と曲線$y=\log x \cdots②$の共通接線を考える.

(1)共通接線の本数を,実数$c$の値によって答えよ.
(2)共通接線が$1$本であるとき,その接線と$①$,$②$それぞれとの接点を求めよ.
(3)共通接線が$1$本であるとき,$①$,$②$と$x$軸で囲まれる図形の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第5問
$c$を実数とし,曲線$y=x^2+c \cdots①$と曲線$y=\log x \cdots②$の共通接線を考える.

(1)共通接線の本数を,実数$c$の値によって答えよ.
(2)共通接線が$1$本であるとき,その接線と$①$,$②$それぞれとの接点を求めよ.
(3)共通接線が$1$本であるとき,$①$,$②$と$x$軸で囲まれる図形の面積を求めよ.
福島大学 国立 福島大学 2015年 第4問
三角形$\mathrm{OAB}$の辺$\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{BO}$を共通の比$m:n$に内分する点を,それぞれ,$\mathrm{R}$,$\mathrm{P}$,$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OA}}$を$\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}$を$\overrightarrow{b}$とするとき,次の問いに答えなさい.

(1)$\overrightarrow{\mathrm{OP}},\ \overrightarrow{\mathrm{OQ}},\ \overrightarrow{\mathrm{OR}}$を,それぞれ,$m,\ n,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表しなさい.
(2)$|\overrightarrow{\mathrm{QR}}|^2,\ |\overrightarrow{\mathrm{QP}}|^2$の値,および,内積$\overrightarrow{\mathrm{QR}} \cdot \overrightarrow{\mathrm{QP}}$を,それぞれ,$m,\ n,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表しなさい.
(3)三角形$\mathrm{OAB}$の重心$\mathrm{G}$と三角形$\mathrm{PQR}$の重心$\mathrm{H}$が一致することを示しなさい.
長崎大学 国立 長崎大学 2015年 第1問
$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=x^2-2ax+2a^2 \]
を考える.ただし,$a>0$とする.以下の問いに答えよ.

(1)放物線$C_2$の頂点の座標を$a$を用いて表せ.
(2)$2$つの放物線$C_1$,$C_2$の共通接線を$\ell$とし,$C_1$と$\ell$との接点の$x$座標を$p$,$C_2$と$\ell$との接点の$x$座標を$q$とする.$p$と$q$の値および$\ell$の方程式を,それぞれ$a$を用いて表せ.
(3)放物線$C_1$,$C_2$および接線$\ell$によって囲まれた図形の面積を$S_1$とする.$S_1$を$a$を用いて表せ.
(4)点$\displaystyle \left( -\frac{a}{2},\ \frac{a^2}{4} \right)$における$C_1$の接線を$m$とする.このとき,$m$の方程式を$a$を用いて表せ.また,$m$と接線$\ell$との交点の$x$座標を求めよ.
(5)放物線$C_1$および接線$\ell$,$m$によって囲まれた図形の面積を$S_2$とする.$S_2$を$a$を用いて表せ.さらに,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
早稲田大学 私立 早稲田大学 2015年 第3問
$a,\ b$を実数とし,
\[ f(x)=x^2+ax+1,\quad g(x)=-x^2-bx+1 \]
とおく.次の問に答えよ.

(1)方程式$f(x)=0$と$g(x)=0$が共通の解を持つための$a,\ b$の条件を求めよ.
(2)$a \geqq 0,\ b \geqq 0$の範囲で,$(1)$で求めた条件をみたしながら$a,\ b$を動かす.$f(x)=0$と$g(x)=0$の共通解を$\alpha$とし,$y=f(x)$のグラフ上の点$(\alpha,\ 0)$における接線を$\ell$とする.このとき,$y=g(x)$のグラフと$\ell$で囲まれる部分の面積$S$の最小値を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2015年 第4問
次の$2$つの放物線の共通接線の方程式を求めよ.
\[ \begin{array}{l}
y=(x+2)^2-3 \\
y=-(x-2)^2+3 \phantom{\frac{[ ]}{2}}
\end{array} \]
東京理科大学 私立 東京理科大学 2015年 第3問
座標平面上の放物線$\displaystyle C_1:y=2x^2+2x+\frac{1}{2}$と$\displaystyle C_2:y=-2x^2+2x+\frac{3}{2}$に対して次の問いに答えよ.なお,必要なら \ \tbox{\rule[-0.43em]{0pt}{1.6em}\hspace{0.33em} $1$\hspace{0.57em}} $(1)$の結果を使ってもよい.

(1)$C_1$上の点$\displaystyle \mathrm{A}(t,\ 2t^2+2t+\frac{1}{2})$と$C_2$上の点$\displaystyle \mathrm{B}(s,\ -2s^2+2s+\frac{3}{2})$に対し,$C_1$の点$\mathrm{A}$における接線の傾きと$C_2$の点$\mathrm{B}$における接線の傾きが等しくなるための必要十分条件を$t$と$s$の式で表せ.
(2)$(1)$の条件を満たすようなどんな実数$t,\ s$に対しても,直線$\mathrm{AB}$はある共通の点$\mathrm{M}$を通る.$\mathrm{M}$の座標を求めよ.
(3)$\mathrm{M}$を$(2)$で求めた点とする.$C_1$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(4)$\mathrm{M}$を$(2)$で求めた点とする.$C_2$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(5)$(1)$の条件を満たすような実数$t,\ s$に対して,線分$\mathrm{AB}$の長さがとり得る値の最小値を求めよ.
東京都市大学 私立 東京都市大学 2015年 第2問
次の問に答えよ.

(1)$a$を定数とする.放物線$y=ax^2$と曲線$y=\log x$がただ$1$つの共有点$\mathrm{P}$をもち,点$\mathrm{P}$で共通の接線をもつ.$a$の値と点$\mathrm{P}$の座標を求めよ.ただし,$\log$は自然対数とする.

(2)$a,\ b$を定数とし,$f(x)=ax^2+(b-a)x-b$とする.$\displaystyle \lim_{x \to 1} \frac{f(x)}{x-1}=1$,$f(2)=5$が成り立つとき,$a,\ b$の値を求めよ.

(3)定積分$\displaystyle \int_2^3 \frac{x^3-1}{x^2-1} \, dx$の値を求めよ.
スポンサーリンク

「共通」とは・・・

 まだこのタグの説明は執筆されていません。