タグ「共有」の検索結果

3ページ目:全53問中21問~30問を表示)
東京理科大学 私立 東京理科大学 2014年 第3問
$\mathrm{O}$を原点とする$xyz$空間の$x$軸上,$y$軸上,$z$軸上にそれぞれ点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,$\mathrm{AB}=3$,$\mathrm{AC}=2$であるという.そのとき,$\mathrm{BC}=a$とおき,三角形$\mathrm{ABC}$の面積を$S$とおく.

(1)$a$の取りうる値の範囲は
\[ \sqrt{[ア]} \leqq a \leqq \sqrt{[イ][ウ]} \]
である.
(2)$(ⅰ)$ $\displaystyle \cos \angle \mathrm{BAC}=\frac{1}{[エ][オ]}(-a^2+[カ][キ])$である.
$(ⅱ)$ $\displaystyle S^2=\frac{1}{[ク][ケ]}(-a^4+[コ][サ]a^2-[シ][ス])$である.
(3)$\mathrm{OA}=x$とおいて,$S^2$を$x$を用いて表すと
\[ S^2=-\frac{[セ]}{[ソ]}x^4+[タ] \]
となる.
(4)$S=2 \sqrt{2}$のとき,四面体$\mathrm{OABC}$に内接する球(すなわち,中心がこの四面体の内部にあって,すべての面と$1$点のみを共有する球)の半径を$r$とおく.

(i) $\displaystyle r=\frac{\sqrt{[チ]}}{1+[ツ] \sqrt{[テ]}+\sqrt{[ト][ナ]}}$である.

(ii) $r=[ニ] \sqrt{[チ]}-[ヌ] \sqrt{[テ]}+[ネ] \sqrt{[ト][ナ]}-[ノ]$となる.
京都大学 国立 京都大学 2013年 第4問
$\alpha,\ \beta$を実数とする.$xy$平面内で,点$(0,\ 3)$を中心とする円$C$と放物線
\[ y=-\frac{x^2}{3}+\alpha x-\beta \]
が点$\mathrm{P}(\sqrt{3},\ 0)$を共有し,さらに$\mathrm{P}$における接線が一致している.このとき以下の問に答えよ.

(1)$\alpha,\ \beta$の値を求めよ.
(2)円$C$,放物線$\displaystyle y=-\frac{x^2}{3}+\alpha x-\beta$および$y$軸で囲まれた部分の面積を求めよ.
岡山大学 国立 岡山大学 2013年 第4問
$xy$平面において,点$(1,\ 2)$を通る傾き$t$の直線を$\ell$とする.また,$\ell$に垂直で原点を通る直線と$\ell$との交点を$\mathrm{P}$とする.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{P}$の軌跡が$2$次曲線$2x^2-ay=0$と$3$点のみを共有するような$a$の値を求めよ.また,そのとき$3$つの共有点の座標を求めよ.ただし$a \neq 0$とする.
岩手大学 国立 岩手大学 2013年 第6問
実数$a>0$と$k>0$に対して$2$つの曲線
\[ C_1:y=ax^3,\quad C_2:y=k \log x \quad (x>0) \]
を考える.ここで,$\log x$は$x$の自然対数とする.$C_1$と$C_2$がただ$1$点を共有し,その点における接線が一致するとき,次の問いに答えよ.

(1)共有点の$x$座標を求めよ.
(2)$k$を$a$を用いて表せ.
(3)$k=4$のとき,$C_1$,$C_2$および$x$軸で囲まれた図形の面積を求めよ.
岩手大学 国立 岩手大学 2013年 第4問
実数$a>0$と$k>0$に対して$2$つの曲線
\[ C_1:y=ax^2,\quad C_2:y=k \log x \quad (x>0) \]
を考える.ここで,$\log x$は$x$の自然対数とする.$C_1$と$C_2$がただ$1$点を共有し,その点における接線が一致するとき,次の問いに答えよ.

(1)共有点の$x$座標を求めよ.
(2)$k$を$a$を用いて表せ.
(3)$k=2e$のとき,$C_1$,$C_2$および$x$軸で囲まれた部分を$D$とする.$D$の面積$S$を求めよ.ただし,$e$は自然対数の底とする.
(4)(3)の$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
安田女子大学 私立 安田女子大学 2013年 第3問
次の図のように,底面の半径が$3 \, \mathrm{cm}$,高さが$12 \, \mathrm{cm}$の円錐と,底面を共有し,円錐に内接する円柱がある.このとき,次の問いに答えよ.なお,円周率は$\pi$とする.
(図は省略)

(1)円柱の底面の半径を$x \, \mathrm{cm}$とするとき,円柱の高さ$h \, \mathrm{cm}$を$x$を用いて表せ.
(2)円柱の表面積の最大値を求めよ.
首都大学東京 公立 首都大学東京 2013年 第1問
関数$f(x)=|x^2-3x|-x$について,以下の問いに答えなさい.

(1)関数$y=f(x)$のグラフをかきなさい.
(2)直線$\ell:y=-x+k$と$y=f(x)$のグラフがちょうど$3$点を共有するとき,定数$k$の値を求めなさい.
(3)(2)で求めた$k$の値に対する直線$\ell$と$y=f(x)$のグラフで囲まれた図形の面積を求めなさい.
福島県立医科大学 公立 福島県立医科大学 2013年 第1問
以下の各問いに答えよ.

(1)座標平面上の直線$x+2y=6$上にあって,点$(2,\ -3)$との距離が最小になる点の座標を求めよ.
(2)座標平面上の曲線$C:x^2+xy+y^2=3$について,以下の問いに答えよ.

(i) 原点のまわりの${45}^\circ$の回転移動によって,$C$上の各点が移る曲線の方程式を求めよ.
(ii) 曲線$C$で囲まれた図形のうち,$y \geqq 0$の領域に含まれる部分の面積を求めよ.

(3)座標平面上において,曲線$C_1:y=x \log x (x \geqq 1)$と放物線$C_2:y=ax^2$がある点$\mathrm{P}$を共有し,$\mathrm{P}$において共通の接線$\ell$を持つものとする.

(i) $a$の値を求めよ.
(ii) $C_1$,$C_2$および$x$軸によって囲まれた図形の面積を$S_1$とし,$C_1$,$\ell$および$x$軸によって囲まれた図形の面積を$S_2$とする.$S_1,\ S_2$の値を求めよ.

(4)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$と$\angle \mathrm{B}$の大きさをそれぞれ$A$,$B$で表し,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$で表す.$\displaystyle \tan \theta=\frac{3}{4}$になる$\displaystyle \theta \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$について,$\displaystyle \frac{a}{c} \cos (B-\theta)+\frac{b}{c} \cos (A+\theta)$の値を求めよ.
(5)$n$は自然数とする.導関数の定義にしたがって,関数$f(x)=x^n$の導関数を求めよ.
(6)$n$は$2$以上の自然数とする.$\displaystyle \frac{1}{2^n}$は,小数第$(n-1)$位が$2$,小数第$n$位が$5$である小数第$n$位までの有限小数で表わされることを示せ.
東京大学 国立 東京大学 2012年 第2問
図のように,正三角形を$9$つの部屋に辺で区切り,部屋$\mathrm{P}$,$\mathrm{Q}$を定める.$1$つの球が部屋$\mathrm{P}$を出発し,$1$秒ごとに,そのまま部屋にとどまることなく,辺を共有する隣の部屋に等確率で移動する.球が$n$秒後に部屋$\mathrm{Q}$にある確率を求めよ.

\setlength\unitlength{1truecm}
(図は省略)
東京大学 国立 東京大学 2012年 第3問
図のように,正三角形を$9$つの部屋に辺で区切り,部屋$\mathrm{P}$,$\mathrm{Q}$を定める.$1$つの球が部屋$\mathrm{P}$を出発し,$1$秒ごとに,そのまま部屋にとどまることなく,辺を共有する隣の部屋に等確率で移動する.球が$n$秒後に部屋$\mathrm{Q}$にある確率を求めよ.

\setlength\unitlength{1truecm}
(図は省略)
スポンサーリンク

「共有」とは・・・

 まだこのタグの説明は執筆されていません。