タグ「共役」の検索結果

1ページ目:全7問中1問~10問を表示)
千葉大学 国立 千葉大学 2016年 第3問
$\displaystyle z=\cos \frac{2\pi}{7}+i \sin \frac{2\pi}{7}$($i$は虚数単位)とおく.

(1)$z+z^2+z^3+z^4+z^5+z^6$を求めよ.
(2)$\alpha=z+z^2+z^4$とするとき,$\alpha+\overline{\alpha}$,$\alpha \overline{\alpha}$および$\alpha$を求めよ.ただし,$\overline{\alpha}$は$\alpha$の共役複素数である.
(3)$(1-z)(1-z^2)(1-z^3)(1-z^4)(1-z^5)(1-z^6)$を求めよ.
千葉大学 国立 千葉大学 2016年 第3問
$\displaystyle z=\cos \frac{2\pi}{7}+i \sin \frac{2\pi}{7}$($i$は虚数単位)とおく.

(1)$z+z^2+z^3+z^4+z^5+z^6$を求めよ.
(2)$\alpha=z+z^2+z^4$とするとき,$\alpha+\overline{\alpha}$,$\alpha \overline{\alpha}$および$\alpha$を求めよ.ただし,$\overline{\alpha}$は$\alpha$の共役複素数である.
(3)$(1-z)(1-z^2)(1-z^3)(1-z^4)(1-z^5)(1-z^6)$を求めよ.
千葉大学 国立 千葉大学 2016年 第4問
$\displaystyle z=\cos \frac{2\pi}{7}+i \sin \frac{2\pi}{7}$($i$は虚数単位)とおく.

(1)$z+z^2+z^3+z^4+z^5+z^6$を求めよ.
(2)$\alpha=z+z^2+z^4$とするとき,$\alpha+\overline{\alpha}$,$\alpha \overline{\alpha}$および$\alpha$を求めよ.ただし,$\overline{\alpha}$は$\alpha$の共役複素数である.
(3)$(1-z)(1-z^2)(1-z^3)(1-z^4)(1-z^5)(1-z^6)$を求めよ.
兵庫県立大学 公立 兵庫県立大学 2016年 第4問
$i$を虚数単位とし,$\displaystyle \alpha=\cos \frac{2\pi}{7}+i \sin \frac{2\pi}{7}$とする.

(1)$\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6=-1$が成立することを示せ.
(2)$z=\alpha+\alpha^2+\alpha^4$とするとき,$z+\overline{z}$と$z \overline{z}$を求めよ.ここで$\overline{z}$は$z$の共役複素数である.
(3)$\alpha+\alpha^2+\alpha^4$を求めよ.
筑波大学 国立 筑波大学 2015年 第6問
$\alpha$を実数でない複素数とし,$\beta$を正の実数とする.以下の問いに答えよ.ただし,複素数$w$に対してその共役複素数を$\overline{w}$で表す.

(1)複素数平面上で,関係式$\alpha \overline{z}+\overline{\alpha}z=|z|^2$を満たす複素数$z$の描く図形を$C$とする.このとき,$C$は原点を通る円であることを示せ.
(2)複素数平面上で,$(z-\alpha)(\beta-\overline{\alpha})$が純虚数となる複素数$z$の描く図形を$L$とする.$L$は$(1)$で定めた$C$と$2$つの共有点をもつことを示せ.また,その$2$点を$\mathrm{P}$,$\mathrm{Q}$とするとき,線分$\mathrm{PQ}$の長さを$\alpha$と$\overline{\alpha}$を用いて表せ.
(3)$\beta$の表す複素数平面上の点を$\mathrm{R}$とする.$(2)$で定めた点$\mathrm{P}$,$\mathrm{Q}$と点$\mathrm{R}$を頂点とする三角形が正三角形であるとき,$\beta$を$\alpha$と$\overline{\alpha}$を用いて表せ.
同志社大学 私立 同志社大学 2015年 第4問
(選択)$i=\sqrt{-1}$とし,$\overline{z}$は$z$の共役複素数を表すとする.次の問いに答えよ.

\mon[$(1)$] 複素数$z=2+i$に対して,複素数$z_1=(1+\sqrt{3}i) \overline{z}$の値を求めよ.
\mon[$(2)$] 実数$k$と複素数$z=1+ti$($t$は実数)に対して,次の等式が成立する$k,\ t$の組をすべて求めよ.
\[ (1+\sqrt{3}i) \overline{z}=kz \]
\mon[$(3)$] 複素数$w_1$に対し,複素数$w_2,\ w_3$を
\[ w_2=(1+\sqrt{3}i) \overline{w_1},\quad w_3=(1+\sqrt{3}i) \overline{w_2} \]
によって定める.$w_3$を$w_1$を用いて表せ.
\mon[$(4)$] 上の$(1)$で求めた$z_1$に対して,複素数$z_n (n=2,\ 3,\ \cdots)$を
\[ z_{n+1}=(1+\sqrt{3}i) \overline{z_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.$z_{2m-1} (m=1,\ 2,\ 3,\ \cdots)$を$m$を用いて表せ.
宮崎大学 国立 宮崎大学 2014年 第4問
$t$を定数とする$2$次方程式$\displaystyle z^2-tz+t-\frac{1}{2}=0$について,次の各問に答えよ.ただし,定数$t$は実数とする.

(1)この$2$次方程式が実数解をもち,すべての解が$-1$以上$1$以下であるような定数$t$の値の範囲を求めよ.
(2)この$2$次方程式が$2$つの共役な虚数解$z=x \pm yi$($x,\ y$は実数,$i$は虚数単位)をもち,$x^2+y^2 \leqq 1$を満たすような定数$t$の値の範囲を求めよ.
スポンサーリンク

「共役」とは・・・

 まだこのタグの説明は執筆されていません。