タグ「公比」の検索結果

7ページ目:全64問中61問~70問を表示)
金沢工業大学 私立 金沢工業大学 2010年 第6問
数列$\{a_n\}$を初項$1$,公差$\displaystyle \frac{1}{2}$の等差数列,$\{b_n\}$を初項$2$,公比$\displaystyle \frac{1}{2}$の等比数列とし,$\{c_n\}$を$c_1=3$,$c_{n+1}-c_n=n+1$で定まる数列とする.また,$\mathrm{O}$を原点とする座標空間の点$(a_n,\ b_n,\ c_n)$を$\mathrm{P}_n$とする.

(1)$\displaystyle \overrightarrow{\mathrm{OP}_n}=\left( \frac{[キ]}{[ク]} (n+[ケ]),\ 2^{[コ]-n},\ \frac{[サ]}{[シ]}(n^2+n+[ス]) \right)$である.

(2)$\displaystyle \overrightarrow{\mathrm{P}_n \mathrm{P}_{n+1}}=\left( \frac{[セ]}{[ソ]},\ -[タ]^{1-n},\ n+[チ] \right)$である.

(3)$\displaystyle |\overrightarrow{\mathrm{P}_n \mathrm{P}_{n+1}}|>100$となるような最小の自然数$n$は$[ツテ]$である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2010年 第3問
数列$\{a_n\}$に対して,
\[ b_n=\frac{a_1+a_2+\cdots +a_n}{n},\quad c_n=\frac{a_1+2a_2+\cdots +na_n}{n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおく.このとき下記の問いに答えなさい.

(1)数列$\{a_n\}$が,初項$1$,公比$2$の等比数列のとき,数列$\{a_n\}$の一般項は,$a_n=[$1$]$である.
数列$\{b_n\}$の一般項は,$b_n=[$2$]$であり,数列$\{c_n\}$の一般項は,$c_n=[$3$]$である.
(2)数列$\{b_n\}$が,初項$1$,公差$2$の等差数列のとき,数列$\{b_n\}$の一般項は,$b_n=[$4$]$である.
数列$\{a_n\}$の一般項は,$a_n=[$5$]$であり,数列$\{c_n\}$の一般項は,$c_n=[$6$]$である.
早稲田大学 私立 早稲田大学 2010年 第1問
次の各問に答えよ.

(1)異なる$3$個のサイコロを同時に投げたとき,目の和が$5$の倍数になる場合は$[ア]$通りである.
(2)数列$\{a_n\}$は,初項が$2$,公差が$5$の等差数列であり,数列$\{b_n\}$は,初項が$1$,公比が$3$の等比数列である.このとき
\[ a_1b_1 + a_2b_2 + \cdots + a_nb_n = \frac{[イ]+([ウ]n+[エ])3^n}{[オ]} \]
である.ただし,$[オ]$はできる限り小さい自然数で答えること.
大阪市立大学 公立 大阪市立大学 2010年 第1問
正の実数からなる2つの数列$\{a_n\}$と$\{b_n\}$は,$n \geqq 3$について
\[ a_n = \frac{a_{n-1} +a_{n-2}}{2},\ b_n = \sqrt{b_{n-1}b_{n-2}} \]
をみたすものとする.次の問いに答えよ.

(1)$\{a_n\}$の階差数列を$\{c_n\}$とすると,$\{c_n\}$は等比数列になることを示し,その公比を求めよ.
(2)$n \geqq 3$について$a_n$を$a_1,\ a_2,\ n$を用いて表せ.
(3)$b_1 = 1,\ b_2 = 2$のとき,$n \geqq 3$について$\log_2 b_n$を$n$を用いて表せ.
スポンサーリンク

「公比」とは・・・

 まだこのタグの説明は執筆されていません。