タグ「公式」の検索結果

2ページ目:全15問中11問~20問を表示)
横浜市立大学 公立 横浜市立大学 2013年 第2問
$a$を正の定数とする.$n$を$0$以上の整数とし,多項式$P_n(x)$を$n$階微分を用いて
\[ P_n(x)=\frac{d^n}{dx^n}(x^2-a^2)^n \quad (n \geqq 1),\quad P_0(x)=1 \]
とおく.以下の問いに答えよ.

(1)$n=2$および$n=3$に対して
\[ P_2(-a),\quad P_3(-a) \]
を求めよ.
(2)$u=u(x)$,$v=v(x)$を何回でも微分可能な関数とする.そのとき,{\bf ライプニッツの公式}
\[ (uv)^{(n)}=\comb{n}{0}u^{(n)}v+\comb{n}{1}u^{(n-1)}v^\prime+\cdots +\comb{n}{k}u^{(n-k)}v^{(k)}+\cdots +\comb{n}{n-1}u^\prime v^{(n-1)}+\comb{n}{n}uv^{(n)} \]
を数学的帰納法を用いて証明せよ(ただし,$n \geqq 1$).ここで,$w^{(k)}$は$w=w(x)$の第$k$次導関数を表し,また$w^{(0)}=w$とする.
(3)一般の$n$に対して
\[ P_n(-a),\quad P_n(a) \]
を求めよ.
中央大学 私立 中央大学 2012年 第1問
次の問に答えよ.

(1)$a>0$,$a \neq 1$,$M>0$とする.$a$を底とする$M$の対数$\log_aM$の定義を述べよ.

(2)$(1)$で述べた定義に基づいて底の変換公式$\displaystyle \log_aM=\frac{\log_bM}{\log_ba}$を証明せよ.ただし,$a,\ b,\ M$は正の実数で,$a \neq 1$,$b \neq 1$である.
(3)$m \log_3p+n \log_9q=2$を満たす正の整数$m,\ n$が存在するような正の整数の組$(p,\ q)$をすべて求めよ.
広島修道大学 私立 広島修道大学 2012年 第2問
次の問に答えよ.

(1)次の等式が成り立つことを証明せよ.

(i) $\cos (\alpha+\beta+\gamma)+\cos (\alpha+\beta-\gamma)=2 \cos (\alpha+\beta) \cos \gamma$
(ii) $\displaystyle \cos \alpha \cos \beta \cos \gamma=\frac{1}{4} \biggl\{ \cos (\alpha+\beta-\gamma)+\cos (\beta+\gamma-\alpha)$
\qquad\qquad\qquad\qquad\quad $+\cos (\gamma+\alpha-\beta)+\cos (\alpha+\beta+\gamma) \biggr\}$

(2)$\triangle \mathrm{ABC}$において次の等式が成り立つことを証明せよ.
\[ \sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \]
(注意)なお,次の公式を用いてもよい.
\[ \cos \theta_1+\cos \theta_2=2 \cos \frac{\theta_1+\theta_2}{2} \cos \frac{\theta_1-\theta_2}{2} \]
長崎大学 国立 長崎大学 2011年 第4問
次の問いに答えよ.

(1)関係式
\[ a_1=1,\quad na_{n+1}-(n+1)a_n=1 \quad (n=1,\ 2,\ \cdots) \]
によって定義される数列$\{a_n\}$の一般項を求めたい.$\displaystyle b_n=\frac{a_n}{n} \ (n=1,\ 2,\ \cdots)$とおいて数列$\{b_n\}$の一般項を求めることにより,$a_n$を求めよ.
(2)$x \neq 1$のとき,等比数列の和の公式
\[ \sum_{k=0}^{n-1}x^k=\frac{x^n-1}{x-1} \]
の両辺を$x$で微分せよ.その結果を利用して,$\displaystyle \sum_{k=1}^{n-1}kx^k$を求めよ.
(3)$p \neq 1$のとき,関係式
\[ c_1=0,\quad \frac{pc_{n+1}}{n}-\frac{c_n}{n+1}=\frac{1}{n+1} \quad (n=1,\ 2,\ \cdots) \]
によって定義される数列$\{c_n\}$の一般項を求めよ.
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2010年 第2問
$a \neq 0$で$b^2-4ac \geqq 0$とするとき,$2$次方程式
\[ ax^2+bx+c=0 \]
の解$x$を与える公式
\[ x=\frac{-b \pm \sqrt{b^2-4ac}}{2a} \]
を導きなさい.
スポンサーリンク

「公式」とは・・・

 まだこのタグの説明は執筆されていません。