タグ「公差」の検索結果

9ページ目:全87問中81問~90問を表示)
早稲田大学 私立 早稲田大学 2010年 第1問
$[ア]$~$[オ]$にあてはまる数または式を記入せよ.

(1)整数$a,\ b$が$2a+3b=42$を満たすとき,$ab$の最大値は$[ア]$である.
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{BC}=1$,$\mathrm{CA}=\sqrt{2}$とし,$\angle \mathrm{A}=\alpha$,$\angle \mathrm{B}=\beta$とする.正の整数$m,\ n$が$m\alpha + n\beta = \pi$を満たすとき,$m=[イ]$,$n=[ウ]$である.
(3)数列$\{a_n\}$は次の$3$つの条件を満たしている.

(i) $\{a_n\}$は等差数列で,その公差は$0$ではない.
(ii) $a_1=1$
(iii) 数列$a_3,\ a_6,\ a_{10}$は等比数列になっている.

このとき数列$\{a_n\}$の第$2010$項までの和$\displaystyle \sum_{n=1}^{2010}a_n$の値は$[エ]$である.
(4)四面体$\mathrm{ABCD}$は$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=1$を満たす.このような四面体の体積のとり得る最大値は$[オ]$である.
早稲田大学 私立 早稲田大学 2010年 第1問
次の各問に答えよ.

(1)異なる$3$個のサイコロを同時に投げたとき,目の和が$5$の倍数になる場合は$[ア]$通りである.
(2)数列$\{a_n\}$は,初項が$2$,公差が$5$の等差数列であり,数列$\{b_n\}$は,初項が$1$,公比が$3$の等比数列である.このとき
\[ a_1b_1 + a_2b_2 + \cdots + a_nb_n = \frac{[イ]+([ウ]n+[エ])3^n}{[オ]} \]
である.ただし,$[オ]$はできる限り小さい自然数で答えること.
金沢工業大学 私立 金沢工業大学 2010年 第6問
数列$\{a_n\}$を初項$1$,公差$\displaystyle \frac{1}{2}$の等差数列,$\{b_n\}$を初項$2$,公比$\displaystyle \frac{1}{2}$の等比数列とし,$\{c_n\}$を$c_1=3$,$c_{n+1}-c_n=n+1$で定まる数列とする.また,$\mathrm{O}$を原点とする座標空間の点$(a_n,\ b_n,\ c_n)$を$\mathrm{P}_n$とする.

(1)$\displaystyle \overrightarrow{\mathrm{OP}_n}=\left( \frac{[キ]}{[ク]} (n+[ケ]),\ 2^{[コ]-n},\ \frac{[サ]}{[シ]}(n^2+n+[ス]) \right)$である.

(2)$\displaystyle \overrightarrow{\mathrm{P}_n \mathrm{P}_{n+1}}=\left( \frac{[セ]}{[ソ]},\ -[タ]^{1-n},\ n+[チ] \right)$である.

(3)$\displaystyle |\overrightarrow{\mathrm{P}_n \mathrm{P}_{n+1}}|>100$となるような最小の自然数$n$は$[ツテ]$である.
北海道科学大学 私立 北海道科学大学 2010年 第20問
初項$-2$,公差$3$の等差数列の第$10$項は$[ ]$である.また,この数列の初項から第$10$項までの和は$[ ]$である.
東北医科薬科大学 私立 東北医科薬科大学 2010年 第3問
初項$2$,公差$4$の等差数列$a_n$を
\[ \begin{array}{cccccc}
a_1 & a_2 & a_4 & a_7 & a_{11} & \cdots \\
a_3 & a_5 & a_8 & a_{12} & \cdots & \cdots \\
a_6 & a_9 & \swarrow & \cdots & \cdots & \cdots \\
a_{10} & \swarrow & \cdots & \cdots & \cdots & \cdots
\end{array} \]
とならべて,これを
\[ \begin{array}{cccccc}
b(1,\ 1) & b(1,\ 2) & b(1,\ 3) & b(1,\ 4) & b(1,\ 5) & \cdots \\
b(2,\ 1) & b(2,\ 2) & b(2,\ 3) & b(2,\ 4) & \cdots & \cdots \\
b(3,\ 1) & b(3,\ 2) & \swarrow & \cdots & \cdots & \cdots \\
b(4,\ 1) & \swarrow & \cdots & \cdots & \cdots & \cdots
\end{array} \]
と表す.例えば$a_1=b(1,\ 1)$である.このとき,次の問に答えなさい.

(1)このとき,$b(1,\ 2)=[ア]$である.
(2)$1$行目の$l$番目の数は$b(1,\ l)=[イ]l^2-[ウ]l+[エ]$である.
(3)$1$行目の$1$番目の数から$1$行目の$k$番目の数までの和は
\[ \sum_{l=1}^k b(1,\ l)=\frac{[オ]k \left( k^{[カ]}+[キ] \right)}{[ク]} \]
である.
(4)$k$行目の$l$番目の数は
\[ b(k,\ l)=[ケ]k^2+[コ]l^2+[サ]kl-[シ]k-[ス]l+[セ] \]
である.
(5)$1$行目から$n$行目までの$1$番目の数から$n$番目の数までの和を$S(n)$とおく.このとき,$S(2)$は
\[ \begin{array}{cc}
b(1,\ 1) & b(1,\ 2) \\
b(2,\ 1) & b(2,\ 2) \\
\end{array} \]
の和なので$S(2)=[ソタ]$である.また,$\displaystyle S(k)=\frac{k^{[チ]} ([ツ]k^2-[テ])}{[ト]}$である.
早稲田大学 私立 早稲田大学 2010年 第1問
次の各問に答えよ.

(1)異なる$3$個のサイコロを同時に投げたとき,目の和が$5$の倍数になる場合は$[ア]$通りである.
(2)数列$\{a_n\}$は,初項が$2$,公差が$5$の等差数列であり,数列$\{b_n\}$は,初項が$1$,公比が$3$の等比数列である.このとき
\[ a_1b_1 + a_2b_2 + \cdots + a_nb_n = \frac{[イ]+([ウ]n+[エ])3^n}{[オ]} \]
である.ただし,$[オ]$はできる限り小さい自然数で答えること.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2010年 第3問
数列$\{a_n\}$に対して,
\[ b_n=\frac{a_1+a_2+\cdots +a_n}{n},\quad c_n=\frac{a_1+2a_2+\cdots +na_n}{n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおく.このとき下記の問いに答えなさい.

(1)数列$\{a_n\}$が,初項$1$,公比$2$の等比数列のとき,数列$\{a_n\}$の一般項は,$a_n=[$1$]$である.
数列$\{b_n\}$の一般項は,$b_n=[$2$]$であり,数列$\{c_n\}$の一般項は,$c_n=[$3$]$である.
(2)数列$\{b_n\}$が,初項$1$,公差$2$の等差数列のとき,数列$\{b_n\}$の一般項は,$b_n=[$4$]$である.
数列$\{a_n\}$の一般項は,$a_n=[$5$]$であり,数列$\{c_n\}$の一般項は,$c_n=[$6$]$である.
スポンサーリンク

「公差」とは・・・

 まだこのタグの説明は執筆されていません。