タグ「公差」の検索結果

8ページ目:全87問中71問~80問を表示)
北海学園大学 私立 北海学園大学 2011年 第3問
数列$\{a_n\}$を初項$a$,公差$d$の等差数列とし,$a_5=108$とする.また,$\{a_n\}$の初項から第$n$項までの和を$S_n$とし,$S_{11}>0$,$S_{12}<0$とする.ただし,$n=1,\ 2,\ 3,\ \cdots$とする.

(1)$a$を$d$を用いて表せ.
(2)$d$の値の範囲を求めよ.
(3)$a_n<0$となる最小の$n$の値を求めよ.
北海学園大学 私立 北海学園大学 2011年 第6問
数列$\{a_n\}$は初項$200$,公差$d$の等差数列であり,$\{a_n\}$の第$15$項から第$20$項までの和が$309$であるとする.$\{a_n\}$の初項から第$n$項までの和を$S_n$とおく.ただし,$n=1,\ 2,\ 3,\ \cdots$とする.

(1)$d$の値を求めよ.
(2)$a_n<0$となるような最小の自然数$n$を求めよ.また,$S_n$の最大値を求めよ.
(3)$b_n=S_n (n=1,\ 2,\ 3,\ \cdots)$によって定義される数列$\{b_n\}$の初項から第$n$項までの和$T_n$を求めよ.
北海学園大学 私立 北海学園大学 2011年 第4問
数列$\{a_n\}$を初項$a$,公差$d$の等差数列とし,$a_5=108$とする.また,$\{a_n\}$の初項から第$n$項までの和を$S_n$とし,$S_{11}>0$,$S_{12}<0$とする.ただし,$n=1,\ 2,\ 3,\ \cdots$とする.

(1)$a$を$d$を用いて表せ.
(2)$d$の値の範囲を求めよ.
(3)$a_n<0$となる最小の$n$の値を求めよ.
島根大学 国立 島根大学 2010年 第1問
数列$\{a_n\}$を初項3,公比3の等比数列とし,数列$\{b_n\}$を初項11,公差8の等差数列とする.$\{a_n\}$と$\{b_n\}$に共通に含まれる項を小さいものから順に並べて得られる数列$\{c_n\}$の一般項を求めよ.
香川大学 国立 香川大学 2010年 第2問
数列$\{a_n\}$を初項1,公差$\displaystyle \frac{2}{7}$の等差数列とするとき,次の問に答えよ.

(1)数列$\{a_n\}$の一般項$a_n$および初項から第$n$項までの和$\displaystyle \sum_{k=1}^n a_k$を$n$を用いて表せ.
(2)実数$x$に対して,$m \leqq x$をみたす最大の整数$m$を$[\,x\,]$で表す.数列$\{b_n\}$を$b_n=[\,a_n\,]$で定めるとき,$b_7,\ b_{14},\ b_{15}$を求めよ.
(3)(2)で定めた数列$\{b_n\}$について,$b_{100}$および$\displaystyle \sum_{k=1}^{100} b_k$を求めよ.
香川大学 国立 香川大学 2010年 第2問
数列$\{a_n\}$を初項1,公差$\displaystyle \frac{2}{7}$の等差数列とするとき,次の問に答えよ.

(1)数列$\{a_n\}$の一般項$a_n$および初項から第$n$項までの和$\displaystyle \sum_{k=1}^n a_k$を$n$を用いて表せ.
(2)実数$x$に対して,$m \leqq x$をみたす最大の整数$m$を$[\,x\,]$で表す.数列$\{b_n\}$を$b_n=[\,a_n\,]$で定めるとき,$b_7,\ b_{14},\ b_{15}$を求めよ.
(3)(2)で定めた数列$\{b_n\}$について,$b_{100}$および$\displaystyle \sum_{k=1}^{100} b_k$を求めよ.
香川大学 国立 香川大学 2010年 第2問
数列$\{a_n\}$を初項1,公差$\displaystyle \frac{2}{7}$の等差数列とするとき,次の問に答えよ.

(1)数列$\{a_n\}$の一般項$a_n$および初項から第$n$項までの和$\displaystyle \sum_{k=1}^n a_k$を$n$を用いて表せ.
(2)実数$x$に対して,$m \leqq x$をみたす最大の整数$m$を$[\,x\,]$で表す.数列$\{b_n\}$を$b_n=[\,a_n\,]$で定めるとき,$b_7,\ b_{14},\ b_{15}$を求めよ.
(3)(2)で定めた数列$\{b_n\}$について,$b_{100}$および$\displaystyle \sum_{k=1}^{100} b_k$を求めよ.
浜松医科大学 国立 浜松医科大学 2010年 第2問
3次関数$f(x)=x^3-3ax^2 \ (a>0)$と,曲線$C:y=f(x) \ (-\infty<x<\infty)$を考える.以下の問いに答えよ.

(1)$y=f(x)$の変曲点における接線の式を求めよ.
(2)曲線$C$はこの変曲点に関して対称であることを示せ.
(3)$b,\ c$は実数とする.3次方程式$x^3-3ax^2=bx-c$が3つの解をもち,それらの解が等差数列をなすとき,$c$を$a,\ b$の式で表せ.
(4)(3)において,等差数列の公差が$2 \sqrt{3}$に等しいとする.このとき,3次関数$f(x)-bx+c$の極値を求めよ.
宇都宮大学 国立 宇都宮大学 2010年 第2問
座標平面の$x$軸の正の部分を始線にとり,角${\theta_n}^\circ \geqq 0 \ $(度数法)の動径と単位円との交点を$\mathrm{P}_n$とする.$\theta_1=0$のとき,次の問いに答えよ.

(1)$\{ \theta_n \}$は等差数列とする.$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_{10}$が単位円の周上を正の向きにちょうど$1$周して$\mathrm{P}_{10}=\mathrm{P}_1$となるとき,数列$\{ \theta_n \}$の公差を求めよ.
(2)$\{ \theta_n \}$は,$\theta_{n+1}-\theta_n=n+d$を満たす数列とする.$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_k \ (k \geqq 2)$が単位円の周上を正の向きにちょうど$1$周して$\mathrm{P}_k=\mathrm{P}_1$となるとき,$d$を$k$を用いて表せ.
(3)$\{ \theta_n \}$は,(2)の数列とする.$k=6$のとき,$\mathrm{P}_n=\mathrm{P}_1$を満たす$n \ (n \geqq 7)$をひとつ求めよ.
帯広畜産大学 国立 帯広畜産大学 2010年 第1問
自然数$n$に対して,$\{a_n\}$は初項$a$,一般項$a_n$の数列であり,$\{b_n\}$ \\
は初項$b$,一般項$b_n$の数列である.座標平面上の点$\mathrm{P}_n(a_n,\ b_n)$, \\
点$\mathrm{P}_{n+1}(a_{n+1},\ b_{n+1})$と点$\mathrm{Q}_n(a_{n+1},\ b_n)$の座標は数列$\{a_n\}$と \\
$\{b_n\}$によって与えられる.また,点$\mathrm{P}_n$と点$\mathrm{P}_{n+1}$を通る直線の傾 \\
き$g_n$と$\triangle \mathrm{P}_n \mathrm{P}_{n+1} \mathrm{Q}_n$の面積$h_n$は,それぞれ$g_n=cb_n,\ h_n=dg_n$で定義され,各点の位置関係は右図のようになる.ここで,$h_n$を一般項とする数列を$\{h_n\}$で表し,また,$d>0$,任意の$n$について$a_{n+1}>a_n,\ h_n>0$と仮定する.
\img{3_2148_2010_1}{50}


(1)数列$\{a_n\},\ \{b_n\}$と$\{h_n\}$の中から等差数列と等比数列を見つけ,それぞれの公差または公比を$c$と$d$で表しなさい.
(2)数列$\{a_n\}$と数列$\{b_n\}$について,それぞれの一般項と,初項から第$n$項までの和を$a,\ b,\ c,\ d$および$n$で表しなさい.
(3)$\displaystyle d=\frac{1}{2}$のとき,$c$の値の範囲を求めなさい.
(4)$\displaystyle b=1,\ d=\frac{1}{2},\ 4h_2-6h_1-1=0$のとき,$c$の値を求めなさい.
(5)$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$と$\mathrm{Q}_1$の各点を用いて,$\alpha=\angle \mathrm{Q}_1 \mathrm{P}_1 \mathrm{P}_2$,$\beta=\angle \mathrm{P}_2 \mathrm{P}_1 \mathrm{P}_3$,$\theta=\angle \mathrm{Q}_1 \mathrm{P}_1 \mathrm{P}_3$と定義する.$\displaystyle b=1,\ c=\frac{2}{3},\ d=\frac{1}{2}$のとき,$\tan \alpha,\ \tan \beta$と$\tan \theta$を求めなさい.
スポンサーリンク

「公差」とは・・・

 まだこのタグの説明は執筆されていません。