タグ「公差」の検索結果

7ページ目:全87問中61問~70問を表示)
岩手大学 国立 岩手大学 2011年 第3問
$\{a_n\}$は,初項$a_1=-1$,公差$d$の等差数列で,$\{b_n\}$は,初項$b_1=2011$,公比$r$の等比数列とする.ただし,$d \neq 0,\ r \neq 0$とする.これらの数列が
\[ a_nb_{n-1}+3b_na_{n-1}-2b_{n-1}=0 \quad (n \geqq 2) \]
を満たしているとき,次の問いに答えよ.

(1)$\{a_n\}$と$\{b_n\}$の一般項を求めよ.
(2)$|b_n|<|a_n|$となる最小の$n$の値を求めよ.
岩手大学 国立 岩手大学 2011年 第3問
$\{a_n\}$は,初項$a_1=-1$,公差$d$の等差数列で,$\{b_n\}$は,初項$b_1=2011$,公比$r$の等比数列とする.ただし,$d \neq 0,\ r \neq 0$とする.これらの数列が
\[ a_nb_{n-1}+3b_na_{n-1}-2b_{n-1}=0 \quad (n \geqq 2) \]
を満たしているとき,次の問いに答えよ.

(1)$\{a_n\}$と$\{b_n\}$の一般項を求めよ.
(2)$|b_n|<|a_n|$となる最小の$n$の値を求めよ.
愛知教育大学 国立 愛知教育大学 2011年 第3問
数列$\{a_n\}$を初項$a_1=1$,公差が2の等差数列とし,数列$\{b_n\}$は初項$b_1=1$で$b_{n+1}-b_n=a_n$を満たすとする.このとき,以下の問いに答えよ.

(1)数列$\{b_n\}$の一般項を求めよ.
(2)数列$\{b_n\}$の初項から第$n$項までの和$S_n$を求めよ.
(3)4以上の自然数$n$に対して$S_{n+1}<2S_n$が成立することを証明せよ.
帯広畜産大学 国立 帯広畜産大学 2011年 第1問
自然数$n$について,$\{a_n\}$は初項$a$,公差$d$の等差数列であり,$\{b_n\}$は初項$b$,公比$r$の等比数列である.数列$\{a_n\}$の一般項を$a_n$で表し,その初項から第$n$項までの和を$S_a$とする.また,数列$\{b_n\}$の一般項を$b_n$で表し,その初項から第$n$項までの和を$S_b$とする.次の各問に解答しなさい.

(1)$d=2a,\ a \neq 0$とする.

(i) $d$と$n$を用いて$a_n$を表しなさい.また,$a$と$n$を用いて$S_a$を表しなさい.
(ii) 不等式$6a_n<a_{n+1}+27d$および$2a_n>a_{n+1}$を満たすすべての$n$の値を求めなさい.

(2)$r=2b+1,\ b \neq 0$とする.

(i) $b$と$n$を用いて$b_n$を表しなさい.また,$r$と$n$を用いて$S_b$を表しなさい.
(ii) $\displaystyle \log_2 b_n > \log_2 b_{n+1}+\frac{1}{2}$であるとき,$r$の値の範囲を求めなさい.

(3)$A$と$B$はいずれも$2 \times 2$行列であり,それぞれ$A=\left( \begin{array}{cc}
d & 2d-1 \\
1 & d
\end{array} \right),\ B=A^2$と定義される.また,行列$B$の$(1,\ 1)$成分を$g$とし,行列$A$が与えられたときの$a$と$b$の関係は次の連立1次方程式を満たすものとする.
\[ A \left( \begin{array}{c}
a \\
b
\end{array} \right)=\left( \begin{array}{c}
-9 \\
1
\end{array} \right) \]

(i) $d$を用いて$g$を表しなさい.また,$g$が最小値をとるときの$d$の値を求めなさい.
(ii) $g$が最小値をとるとき,$A$の逆行列$A^{-1}$を求め,さらに$a$と$b$の値を求めなさい.また,$r \neq 1,\ r>0,\ n=3$および$S_a=2S_b$であるとき,$S_a$と$r$の値を求めなさい.
宇都宮大学 国立 宇都宮大学 2011年 第2問
数列$\{a_n\}$は$a_1=2,\ a_2=2$をみたすとする.$\{a_n\}$の階差数列を$\{b_n\}$とし,$\{b_n\}$の階差数列を$\{c_n\}$とする.数列$\{c_n\}$が$c_1=1$をみたす公差3の等差数列であるとき,次の問いに答えよ.

(1)数列$\{c_n\}$の一般項を求めよ.
(2)数列$\{b_n\}$の一般項を求めよ.
(3)数列$\{a_n\}$の一般項を求めよ.
早稲田大学 私立 早稲田大学 2011年 第3問
初項$1$,公差$2$の等差数列$\{a_n\}$に対して,数列$\{b_n\},\ \{c_n\},\ \{d_n\}$をそれぞれ
\[ b_n = \frac{2n+1}{a_n}, \quad c_n= \log_3 b_n, \quad d_n = \sum_{k=1}^{n}c_k \]
で定める.このとき,
\[ d_n = \log_3 \left([カ]n+[キ]\right) \]
となる.さらに,$d_n$が整数となるような$n$を小さい順に$m$個並べて,その和を求めると,
\[ \frac{[ク]^{m+1}+[ケ]m+[コ]}{4}\]
となる.
明治大学 私立 明治大学 2011年 第1問
次の各問の$[ ]$に数値を入れよ.

(1)$a_1,\ a_2,\ a_3,\ \cdots$を初項が$-15$,公差が整数$d$の等差数列とする.このとき$a_4<0<a_5$ならば,$d=[1]$となり,
\[ \sum_{n=1}^5 (-1)^{n-1}na_n=[2] \]
である.
(2)$1$から$4$までの数字が,$1$つずつ書いてある$4$枚のカードがある.この中から同時に$2$枚を取り出し,大きい方の数字を$a$とし,小さい方の数字を$b$とするとき,$2a-b$を得点とする.このとき,得点の期待値は,$[3]$であり,得点が$[3]$未満となる確率は,$[4]$である.
(3)$0 \leqq x \leqq \pi$かつ$\displaystyle x \neq \frac{\pi}{2}$を満たす$x$について,
\[ 1-\tan^2 x=3 \cos (\pi-x)+\frac{2}{\cos (\pi-x)} \]
を満たすとき,
\[ \cos x=[5],\quad \sin x=[6] \]
である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2011年 第5問
定数$a,\ b$に対し,3つの数$a,\ -2a,\ b$はこの順序で等比数列をなす.また,適当に並べかえると初項が1,公差が$d$の等差数列になる.このとき,$a,\ b,\ d$の値を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2011年 第6問
数列$\{a_n\}$は,初項1,公差$\displaystyle \frac{5}{2}$の等差数列で,数列$\{b_n\}$は,初項2,公差$\displaystyle \frac{7}{4}$の等差数列である.このとき,次の設問に答えよ.

(1)ある$a_n$とある$b_m$が同じ値をとるものを小さい順に$c_1,\ c_2,\ c_3,\ \cdots$とする.このとき,最初からの3項$c_1,\ c_2,\ c_3$の値を求めよ.
(2)一般項$c_n$を$n$の式で表せ.
立教大学 私立 立教大学 2011年 第1問
下記の空欄イ~ホにあてはまる数を記入せよ.

(1)方程式$3\cos^3 \theta-5 \cos^2 \theta-4 \cos \theta+4=0$,および不等式$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$をみたす$\theta$に対して,$\cos \theta=[イ]$である.
(2)公差$\displaystyle \frac{1}{5}$,初項$-8$の等差数列$a_1,\ a_2,\ \cdots$を
\[ a_1 \;|\; a_2,\ a_3 \;|\; a_4,\ a_5,\ a_6 \;|\; a_7,\ a_8,\ a_9,\ a_{10} \;|\; \cdots \]
とグループ分けする.第$101$番目のグループに属する数の和は$[ロ]$である.
(3)空間に$3$点$\mathrm{A}(2,\ 2,\ 2)$,$\mathrm{B}(1,\ 2,\ 1)$,$\mathrm{C}(2,\ y,\ 1)$が与えられている.三角形$\mathrm{ABC}$が直角三角形になるのは$y=[ハ]$のときである.

(4)極限$\displaystyle \lim_{x \to 0} \frac{\sin (1-\cos x)}{x^2}$の値は$[ニ]$である.

(5)$1$個のさいころを$4$回続けて投げるとき,$3$回以上連続して同じ目が出る確率は$[ホ]$である.
スポンサーリンク

「公差」とは・・・

 まだこのタグの説明は執筆されていません。