タグ「公差」の検索結果

4ページ目:全87問中31問~40問を表示)
中京大学 私立 中京大学 2014年 第1問
以下の各問で,$[ ]$にあてはまる数値または記号を求めよ.

(1)放物線$y=ax^2+bx+c (a>0)$が点$(0,\ 9)$を通るとき,
\[ c=[ア] \]
である.さらに,この放物線が点$(3,\ 3)$を通り,放物線の頂点が直線$16x-4y=29$上にあるとき,
\[ (a,\ b)=([イ],\ -[ウ]) \ \text{または} \ \left( \frac{[エ][オ]}{[カ]},\ -\frac{[キ][ク]}{3} \right) \]
である.
(2)$\mathrm{AB}=\mathrm{AC}=2$,$\angle \mathrm{BAC}={90}^\circ$である$\triangle \mathrm{ABC}$の内接円の半径は
\[ [ア]-\sqrt{2} \]
である.また,この内接円に外接し,辺$\mathrm{AB}$,辺$\mathrm{AC}$に接する円の半径は
\[ [イ][ウ]-[エ] \sqrt{2} \]
である.
(3)初項が$a$($a$は自然数),公差が$4$の等差数列$\{a_n\}$と,$a_n$を$9$で割った余りの数列$\{b_n\}$があり,$\displaystyle S_n=\sum_{k=1}^n b_k$とする.$a=1$とするとき,$S_n>2014$となる最小の$n$は
\[ [ア][イ][ウ] \]
であり,
\[ S_{[ア][イ][ウ]}=20 [エ][オ] \]
である.また,$S_n$がちょうど$2014$となる$a$の最小値は
\[ [カ] \]
である.
(4)関数$\displaystyle f(\theta)=2(\sin \theta+\cos \theta)^3-9(\sin \theta+\cos \theta) \left( -\frac{\pi}{4} \leqq \theta \leqq \frac{\pi}{4} \right)$は$\displaystyle \theta=\frac{\pi}{6}$のとき,
\[ f \left( \frac{\pi}{6} \right)=-[ア]-[イ] \sqrt{[ウ]} \]
となる.また,
$\displaystyle \theta=\frac{\pi}{[エ][オ]}$のとき,最小値$-[カ] \sqrt{[キ]}$

をとり,

$\displaystyle \theta=-\frac{\pi}{[ク]}$のとき,最大値$[ケ]$

をとる.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2014年 第1問
以下の設問の$[ ]$に答えなさい.

(1)$a$を$1$より大きな実数,$e$を自然対数の底とし,$f(x)=a^x \log_e a$とする.このとき,曲線$y=f(x)$,直線$x=10$,$x$軸および$y$軸で囲まれた部分の面積$S$を$a$を用いた式で表すと,$S=[$1$]$となる.
(2)$\displaystyle \sin x-\cos x=\frac{1}{2}$(ただし,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$)のとき,$\sin^4 x-\cos^4 x$の値を求めると$[$2$]$となる.
(3)数列$\{a_n\}$を初項$2$,公差$7$の等差数列,数列$\{b_n\}$を初項$1$,公比$2$の等比数列とし,数列$\{c_n\}$の第$n$項を$c_n=a_nb_n (n=1,\ 2,\ 3,\ \cdots)$と定義する.数列$\{c_n\}$の初項から第$n$項までの和$S_n$を$n$を用いた式で表すと,$S_n=[$3$]$となる.また,$S_n=133132$となるのは$n=[$4$]$のときである.
西南学院大学 私立 西南学院大学 2014年 第3問
数列$\{\beta_n\}$の階差数列が,初項$3$,公差$2$の等差数列であるとし,$\beta_1=1$とする.$2$次方程式
\[ x^2-a_nx+b_n=0 \]
の$2$つの解が$\beta_n,\ \beta_{n+1}$となるとき,次の問に答えよ.

(1)$b_2=[ナニ]$である.
(2)$a_9=[ヌネノ]$である.
(3)$x^2-a_nx+b_n$の最小値を$M_n$とすると,数列$\{M_n\}$の階差数列は,初項$[ハヒ]$,公差$[フヘ]$の等差数列となる.
宮城大学 公立 宮城大学 2014年 第2問
次の空欄$[ア]$から$[ク]$にあてはまる数や式を書きなさい.

初項$2$,公差$3$の等差数列$\{a_n\}$と,初項$1$,公差$4$の等差数列$\{b_n\}$がある.このとき,それぞれの一般項を$n$を用いて表せば,
\[ a_n=[ア],\quad b_n=[イ] \]
である.
また,数列$\{a_n\}$と数列$\{b_n\}$に共通に含まれる項を順に並べると,次のような数列$\{c_n\}$が得られる.
\[ c_1=5,\quad c_2=[ウ],\quad c_3=[エ],\quad \cdots \]
したがって,数列$\{c_n\}$の一般項を$n$を用いて表せば,
\[ c_n=[オ] \]
となる.
また,数列$\{c_n\}$の第$p$項を$c_p$とするとき,数列$\{a_n\}$と数列$\{b_n\}$はともに項$c_p$を含む.よってそれぞれの項番号を自然数$p$を用いて表せば,数列$\{a_n\}$の場合は,
\[ n=[カ] \]
であり,数列$\{b_n\}$の場合は,
\[ n=[キ] \]
となる.よって,これらの項番号の差の絶対値を自然数$p$を用いて表せば,$[ク]$となる.
高知大学 国立 高知大学 2013年 第4問
初項から第$n$項までの和が$S_n=2n^2-n \ (n=1,\ 2,\ 3,\ \cdots)$となる数列$\{a_n\}$について,次の問いに答えよ.

(1)一般項$a_n$を求めよ.また,$a_n$は等差数列になることを示し,初項$a$と公差$d$を求めよ.
(2)和$a_2+a_4+a_6+\cdots +a_{2n}$を求めよ.
(3)和$(-1)a_1+(-1)^2a_2+(-1)^3a_3+\cdots +(-1)^{2n}a_{2n}$を求めよ.
(4)$\displaystyle \sum_{i=1}^{2n}(-1)^{i+1}S_i \leqq -5$が,すべての$n=1,\ 2,\ 3,\ \cdots$に対して成り立つことを示せ.
山形大学 国立 山形大学 2013年 第3問
公差が$0$でない等差数列$\{a_n\}$において,初項から第$n$項までの和を$S_n$とする.また,${a_5}^2+{a_6}^2={a_7}^2+{a_8}^2$,$S_{13}=13$が成り立つとする.このとき,次の問に答えよ.

(1)$a_5+a_8=a_6+a_7$であることを示せ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$S_n$を求めよ.
(4)$m$を自然数とする.$\displaystyle \frac{a_ma_{m+1}}{a_{m+2}}$の値が数列$\{a_n\}$の項として現れるすべての$m$を求めよ.
帯広畜産大学 国立 帯広畜産大学 2013年 第1問
自然数$n$について,$\{a_n\}$は初項$a$,公差$d$の等差数列であり,その一般項を$a_n$で表し,初項から第$n$項までの和を$S_a(n)$で表す.また,$\{b_n\}$は一般項が$b_n=2^{a_n}$で定義される数列であり,その初項から第$n$項までの和を$S_b(n)$で表す.次の各問に答えよ.

(1)$a=1,\ d=2$とする.

(i) $n$を用いて$a_n$と$S_a(n)$を表しなさい.
(ii) $\log_{10} \{S_a(1000)\}$の値を求めなさい.
(iii) $10<S_a(n)<50$を満たすすべての$n$の値を求めなさい.

(2)$b_3=\sqrt[5]{4},\ b_7=\sqrt[5]{64}$とする.

(i) $a$と$d$の値を求めなさい.
(ii) $b_{n+1}$の$b_n$に対する比を求めなさい.
(iii) $n$を用いて$b_n$と$S_b(n)$を表しなさい.
\mon[$\tokeishi$] $b_n=2$のとき,$n$と$S_b(n)$のそれぞれの値を求めなさい.

(3)自然数$m$について,$u=\sin a_{2m-1}+\cos a_{2m-1}$,$v=\sin a_{2m}-\cos a_{2m}$,$y=uv$,$0<a<2\pi$,$d=\pi$とする.

(i) $u$の最大値と,$u$が最大値をとるときの$a$の値を求めなさい.
(ii) $v$の最大値と,$v$が最大値をとるときの$a$の値を求めなさい.
(iii) $y$の最大値と,$y$が最大値をとるときの$a$の値を求めなさい.
山形大学 国立 山形大学 2013年 第2問
公差が$0$でない等差数列$\{a_n\}$において,初項から第$n$項までの和を$S_n$とする.また,${a_5}^2+{a_6}^2={a_7}^2+{a_8}^2$,$S_{13}=13$が成り立つとする.このとき,次の問に答えよ.

(1)$a_5+a_8=a_6+a_7$であることを示せ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$S_n$を求めよ.
(4)$m$を自然数とする.$\displaystyle \frac{a_ma_{m+1}}{a_{m+2}}$の値が数列$\{a_n\}$の項として現れるすべての$m$を求めよ.
山形大学 国立 山形大学 2013年 第2問
公差が$0$でない等差数列$\{a_n\}$において,初項から第$n$項までの和を$S_n$とする.また,${a_5}^2+{a_6}^2={a_7}^2+{a_8}^2$,$S_{13}=13$が成り立つとする.このとき,次の問に答えよ.

(1)$a_5+a_8=a_6+a_7$であることを示せ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$S_n$を求めよ.
(4)$m$を自然数とする.$\displaystyle \frac{a_ma_{m+1}}{a_{m+2}}$の値が数列$\{a_n\}$の項として現れるすべての$m$を求めよ.
金沢工業大学 私立 金沢工業大学 2013年 第2問
次の問いに答えよ.

(1)角度$\theta$が$\displaystyle \frac{\pi}{2}<\theta<\pi$であって$\displaystyle \sin \theta+\cos \theta=-\frac{1}{5}$を満たすとき,
\[ \sum_{n=1}^\infty \sin^n \theta=\frac{[シ]}{[ス]},\quad \sum_{n=1}^\infty \cos^n \theta=\frac{[セ][ソ]}{[タ]} \]
である.
(2)初項$7$,公差$9$の等差数列$\{a_n\}$について,
\[ S_n=\frac{1}{a_1a_2}+\frac{1}{a_2a_3}+\frac{1}{a_3a_4}+\cdots +\frac{1}{a_na_{n+1}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
とすると,$\displaystyle S_n=\frac{1}{[チ]} \left( \frac{1}{[ツ]}-\frac{1}{[テ]n+[ト]} \right)$であって,$\displaystyle \lim_{n \to \infty}S_n=\frac{1}{[ナ][ニ]}$である.
スポンサーリンク

「公差」とは・・・

 まだこのタグの説明は執筆されていません。