タグ「公差」の検索結果

3ページ目:全87問中21問~30問を表示)
同志社大学 私立 同志社大学 2015年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)整式$P(x)$は$(x-2)(x+3)$で割ると余りは$5x-2$であり,$(x-2)(x-3)$で割ると余りは$-x+10$である.このとき,$P(x)$を$(x+3)(x-3)$で割ると余りは$([ア])x+([イ])$である.
(2)初項が$a_1=-24$で公差が$12$の等差数列$\{a_n\}$の初項から第$n$項までの和$S_n$は$S_n=[ウ]$である.また,数列$\{b_n\}$の初項$b_1$から第$n$項までの和$T_n$が$T_n=5^n-1$のとき,一般項は$b_n=[エ]$である.このとき,初項が$c_1=-1$で漸化式
\[ c_{n+1}=c_n+S_n-b_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定まる数列$\{c_n\}$の一般項は$c_n=[オ]$である.
(3)曲線$C:y=|x^2-4x-5|$と直線$\ell:y=k$の共有点の個数は$3$個である.このとき,実数$k$の値は$k=[カ]$であり,直線$\ell$と曲線$C$で囲まれた図形の面積は$[キ]$である.
(4)$1$個のサイコロを$3$回投げる.出た目の最大値が$5$となる確率は$[ク]$である.出た目の最大値が$5$,かつ最小値が$1$となる確率は$[ケ]$である.$3$つの出た目の積が$2$の倍数であり,かつ$3$の倍数でない確率は$[コ]$である.
東北工業大学 私立 東北工業大学 2015年 第3問
以下の問いに答えよ.

(1)$\displaystyle (8^{\frac{1}{4}}-3^{-\frac{1}{4}})(8^{\frac{1}{4}}+3^{-\frac{1}{4}})(8^{\frac{1}{2}}+3^{-\frac{1}{2}})=\frac{[ナ][ニ]}{3}$
(2)$\log_2 72-3 \log_4 9+2 \log_4 6=[ヌ][ネ]$
(3)赤,白,青のカードが$4$枚ずつあり,各色ごとに$1$から$4$までの番号が$1$つずつ書かれている.$12$枚のカードをよくまぜてから同時に$3$枚取り出す.$3$枚の番号がすべて異なる確率は$\displaystyle \frac{[ノ][ハ]}{55}$.
(4)$\mathrm{O}$を原点とし,$2$点$\mathrm{A}$,$\mathrm{B}$の位置ベクトルが$\overrightarrow{\mathrm{OA}}=2 \overrightarrow{a}+3 \overrightarrow{b}$,$\overrightarrow{\mathrm{OB}}=(t-6) \overrightarrow{a}+(t+1) \overrightarrow{b}$であるとする($\overrightarrow{a},\ \overrightarrow{b}$は零ベクトルではなく,たがいに平行ではないものとする.$t$は実数とする.).$t=[ヒ][フ]$のとき$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は一直線上にある.
(5)初項$-100$,公差$7$の等差数列において,第$[ヘ][ホ]$項で初めて$500$以上になる.
大阪薬科大学 私立 大阪薬科大学 2015年 第3問
次の問いに答えなさい.

(1)「自然数$m$を$4$で割ったときの余りが$r$であるならば,$m(m+1)$を$4$で割ったときの余りは$r(3-r)$と等しい」ことを$r=0,\ 1,\ 2,\ 3$のそれぞれの場合について$[う]$で示しなさい.ただし,自然数$m$が整数$q,\ r$を用いて
\[ m=4q+r \quad (0 \leqq r<4) \]
と表されるとき,$r$を,$m$を$4$で割ったときの余りという.
(2)$n$を自然数とする.数列$\{a_n\}$は,初項$a_1$が$2$,公差が$2$の等差数列であり,数列$\{b_n\}$は次の条件
\[ b_1=1,\quad b_{n+1}-b_n=\frac{a_{n+1}}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められている.

(i) 一般項$a_n,\ b_n$は,$n$を用いて表すとそれぞれ$a_n=[$\mathrm{I]$}$,$b_n=[$\mathrm{J]$}$である.
(ii) $2$つの集合$A,\ B$を
\[ A=\{a_n \;|\; n \text{は}39 \text{以下の自然数} \},\quad B=\{b_n \;|\; n \text{は}12 \text{以下の自然数} \} \]
とする.このとき,$A$と$B$の共通部分$A \cap B$の要素の個数を$s$とすると,$s=[$\mathrm{K]$}$である.
(iii) $t$を自然数の定数とする.$2$つの集合$C,\ D$を
\[ C=\{a_n \;|\; n \text{は} 100 \text{以下の自然数}\},\quad D=\{b_n \;|\; n \text{は} t \text{以下の自然数}\} \]
とする.このとき,$C$と$D$の和集合$C \cup D$の要素の個数が$111$であるならば,$t$の値は$t=[$\mathrm{L]$}$である.
大阪工業大学 私立 大阪工業大学 2015年 第3問
数列$\{a_n\}$を$\displaystyle a_1=\frac{1}{2}$,$\displaystyle a_{n+1}=\frac{ka_n}{1+3a_n} (n=1,\ 2,\ 3,\ \cdots)$で定める.ただし,$k$は正の定数とする.このとき,次の空所を埋めよ.

(1)$k=1$のとき,$\displaystyle b_n=\frac{1}{a_n}$とおくと,数列$\{b_n\}$は初項$[ア]$,公差$[イ]$の等差数列となり,数列$\{a_n\}$の一般項は,$a_n=[ウ] (n=1,\ 2,\ 3,\ \cdots)$である.
(2)$k \neq 1$のとき,$\displaystyle c_n=\frac{1}{a_n}-\frac{3}{k-1}$とおくと,数列$\{c_n\}$は初項$[エ]$,公比$[オ]$の等比数列となり,数列$\{a_n\}$の一般項は,$\displaystyle a_n=\frac{k-1}{3+[カ]} (n=1,\ 2,\ 3,\ \cdots)$である.
特に,$k=[キ]$のとき,すべての自然数$n$について$a_n$は一定の値である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2015年 第1問
以下の$(1)$~$(4)$の$[$1$]$~$[$4$]$に適切な値を答えなさい.ただし,$e$は自然対数の底とする.

(1)$A=e^2$とするとき,
\[ 8 \left( 1+\cos^3 \frac{\pi}{18} \right) \log_A e-\frac{3}{2} \left( 1+\cos \frac{\pi}{18} \right) \log_e A=[$1$] \]
である.
(2)$b$を正の定数,$x$を正の実数とする.方程式$\log_e x=bx$が異なる$2$つの実数解をもつのは$0<b<[$2$]$のときである.
(3)数列$\{c_n\} (n=1,\ 2,\ 3,\ \cdots)$を,初項$1$,公差$2$の等差数列とする.数列$\{c_n\}$の初項から第$n$項までの和$S_n$に対して$T_n=\log_e S_n$,$U_n=e^{T_n}$と定義する.数列$\{U_n\}$の初項から第$24$項までの和の値は$[$3$]$となる.

(4)定積分$\displaystyle \int_0^D \frac{2e^x}{2e^x+3} \, dx$の値は$[$4$]$である.ただし,$D=\log_e 3$とする.
九州歯科大学 公立 九州歯科大学 2015年 第2問
$\{a_n\}$を初項$a_1=A$,公差$d$の等差数列とする.自然数$j$と$k$に対して
\[ S(j,\ k)=\sum_{i=j}^k a_i=a_j+a_{j+1}+a_{j+2}+\cdots +a_k \]
とおく.$S(1,\ 10)=800$,$S(11,\ 20)=200$が成り立つとき,次の問いに答えよ.ただし,$j<k$とする.

(1)定数$A$と$d$の値を求めよ.

(2)$\displaystyle \frac{S(n+1,\ n^2)}{n(n-1)}=\alpha n^2+\beta n+\gamma$をみたす定数$\alpha,\ \beta,\ \gamma$の値を求めよ.

(3)$S(n+1,\ n^2)<0$となる$n$の最小値$N$の値を求めよ.

(4)$\displaystyle T_n=\sum_{i=1}^n a_{5i}$とおくとき,極限$\displaystyle \lim_{n \to \infty} \frac{(T_n)^2}{S(n+1,\ n^2)}$の値を求めよ.
徳島大学 国立 徳島大学 2014年 第4問
$p$を素数とする.初項,公差がともに$5p$の等差数列を$\{a_n\}$とする.数列$\{b_n\}$は公差が$p$の等差数列で$\displaystyle \sum_{n=1}^p a_n=a_1+a_p+5 \sum_{n=1}^p b_n$を満たす.

(1)$b_1$を求めよ.
(2)$p=2$のとき,$\displaystyle \frac{a_n}{b_n}$の値が自然数となるような$n$をすべて求めよ.
(3)$p \geqq 3$とする.$\displaystyle \frac{a_n}{b_n}$の値が自然数となるような$p$と$n$の組$(p,\ n)$をすべて求めよ.
高知大学 国立 高知大学 2014年 第2問
$\{a_n\},\ \{b_n\}$を${a_n}^2-b_n \geqq 0 (n=1,\ 2,\ \cdots)$となる数列とし,$3$次関数
\[ y=x^3+3a_nx^2+3b_nx+1 \]
のグラフの接線の傾きが$0$となる接点の$x$座標のうち小さくない方を$c_n$とする.このとき,次の問いに答えよ.

(1)$\{a_n\},\ \{b_n\}$が$a_n=n$,$b_n=n^2$で与えられる数列のとき,$\{c_n\}$を求めよ.
(2)$\{b_n\}$を初項も公差も$0$である等差数列とする.このとき,$c_n=b_n (n=1,\ 2,\ \cdots)$となるための条件を求めよ.
(3)$\{a_n\},\ \{b_n\}$をそれぞれ公比が$r$,$r^2$の等比数列とする.このとき,$\{c_n\}$が等比数列になるための条件を求めよ.
(4)$\{a_n\}$が初項$100$,公差$-3$の等差数列で,$\{b_n\}$は初項$396$,公差$-12$の等差数列のとき,$\{c_n\}$を求めよ.
早稲田大学 私立 早稲田大学 2014年 第1問
次の空欄にあてはまる数または式を解答欄に記入せよ.

$\{a_n\}$を,初項$1$,公差$d$の等差数列とし,
\[ P_n=r^{a_1} \cdot r^{a_2} \cdot \cdots \cdot r^{a_n} \]
と定義する.ただし,$r$は$r>1$を満たす定数である.$P_n$が$P_3=P_9$を満たしているならば,公差$d=[ア]$である.このとき,$P_n$は,$n=[イ]$のとき,最大値$[ウ]$をとる.また,$P_n<1$となる最小の$n$は,$n=[エ]$である.
千葉工業大学 私立 千葉工業大学 2014年 第3問
次の各問に答えよ.

(1)折れ線$L:y=4 |x|-5 |x-2|+4 |x-3|$は
$x<0$のとき,$y=[アイ]x+[ウ]$
$0 \leqq x<2$のとき,$y=[エ]x+[オ]$
$2 \leqq x<3$のとき,$y=[カキ]x+[クケ]$
$3 \leqq x$のとき,$y=3x-2$
と表される.$L$と直線$y=2x+k$($k$は定数)の共有点が$4$個となるような$k$の値の範囲は,$[コ]<k<[サ]$である.
(2)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を初項$a_1=3$,公差$4$の等差数列とすると,$a_{50}=[シスセ]$である.数列$\{b_n\} (n=1,\ 2,\ 3,\ \cdots)$を初項$b_1=5$で,$b_{50}=299$をみたす等差数列とすると,$\{b_n\}$の公差は$[ソ]$である.
集合$A,\ B$を
\[ A=\{a_1,\ a_2,\ \cdots,\ a_{50} \},\quad B=\{b_1,\ b_2,\ \cdots,\ b_{50} \} \]
と定める.共通部分$A \cap B$の要素のうち,最小のものは$[タチ]$であり,$A \cap B$の要素の個数は$[ツテ]$である.
スポンサーリンク

「公差」とは・・・

 まだこのタグの説明は執筆されていません。