タグ「全部」の検索結果

12ページ目:全137問中111問~120問を表示)
鳥取大学 国立 鳥取大学 2011年 第2問
下図において,北隅のAの文字から南隅のAの文字まで,南東または南西に文字をたどって最短で進むとき,経路上の文字を読むとABRACADABRAとなる.このとき,次の問いに答えよ.

(1)下図で北隅のAから南隅のAまで最短の進み方(以後,「ABRACADABRAの読み方」という)は全部で何通りあるか.
(2)下図の$T$地点を通るABRACADABRAの読み方は何通りあるか.
(3)下図の$T$地点と$U$地点の両方を通るABRACADABRAの読み方は何通りあるか.
(4)下図の$T$地点と$U$地点のどちらも通らないABRACADABRAの読み方は何通りあるか.

\setlength\unitlength{1truecm}

(図は省略)
鳥取大学 国立 鳥取大学 2011年 第4問
下図において,北隅のAの文字から南隅のAの文字まで,南東または南西に文字をたどって最短で進むとき,経路上の文字を読むとABRACADABRAとなる.このとき,次の問いに答えよ.

(1)下図で北隅のAから南隅のAまで最短の進み方(以後,「ABRACADABRAの読み方」という)は全部で何通りあるか.
(2)下図の$T$地点を通るABRACADABRAの読み方は何通りあるか.
(3)下図の$T$地点と$U$地点の両方を通るABRACADABRAの読み方は何通りあるか.
(4)下図の$T$地点と$U$地点のどちらも通らないABRACADABRAの読み方は何通りあるか.

\setlength\unitlength{1truecm}

(図は省略)
浜松医科大学 国立 浜松医科大学 2011年 第4問
次の問いに答えよ.

(1)$3$つの数$2^{10}-1,\ 3^{10}-1,\ 4^{10}-1$の積を$y=(2^{10}-1)(3^{10}-1)(4^{10}-1)$として,全体集合$U$と部分集合$A,\ B$を次のように定める.
\[ \begin{array}{l}
U=\{ x \;|\; x \text{は}y \text{の正の約数} \} \\
A=\{ x \;|\; x \in U \text{かつ} x \text{は}44 \text{の倍数} \} \\
B=\{ x \;|\; x \in U \text{かつ} x \text{は}45 \text{の倍数} \}
\end{array} \]
このとき,部分集合$A \cap \overline{B}$に属する要素は,全部で何個あるか.
以下,数列$a_n=4^n-1 \ (n=1,\ 2,\ 3,\ \cdots)$を考える.
(2)次の命題$\mathrm{P}$を証明せよ.
\underline{命題$\mathrm{P}$} \quad $n$が$3$で割り切れることは,$a_n$が$9$で割り切れるための十分条件である.
(3)命題$\mathrm{P}$において,十分条件を必要十分条件に書きかえて,命題$\mathrm{Q}$をつくる.命題$\mathrm{Q}$の真偽を答えよ.
(4)$9$と$11$のうち,どちらか一方の数で割り切れるけれども,他方の数では割り切れないような$a_n$だけを取り出し,残りはすべて取り去る.こうして得られる$a_n$の部分列を小さい順に並べると,$23$番目の項は元の数列では第$k$項になるという.番号$k$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第1問
次の$[ ]$にあてはまる数または数式を解答用紙の所定欄に記入せよ.

(1)平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が点$\mathrm{O}$を中心とする半径$1$の円周上にあり,
\[ 3 \overrightarrow{\mathrm{OA}}+7 \overrightarrow{\mathrm{OB}}+5 \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
を満たしている.このとき線分$\mathrm{AB}$の長さは[ア]である.
(2)$xy$平面上の曲線$y=e^x$と$y$軸および直線$y=e$で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積は[イ]である.
(3)碁石を$n$個一列に並べる並べ方のうち,黒石が先頭で白石どうしは隣り合わないような並べ方の総数を$a_n$とする.ここで,$a_1=1$,$a_2=2$である.
(4)立方体の各辺の中点は全部で$12$個ある.頂点がすべてこれら$12$個の点のうちのどれかであるような正多角形は全部で[エ]個ある.
早稲田大学 私立 早稲田大学 2011年 第1問
$[ア]$~$[エ]$にあてはまる数または式を記入せよ.

(1)関数
\[ f(x) = \int_0^1 |t^2-x^2| \, dt \]
の最小値は$[ア]$である.
(2)$n$を正の整数とする.$10^n$の正の約数すべての積は$[イ]$である.
(3)$\log_3n$が無理数となる$2011$以下の正の整数$n$は,全部で$[ウ]$個ある.
(4)関数$f(x)$は,次の$2$つの条件を満たしている.

(5)すべての実数$x$に対して,$f(3+x)=f(3-x)$
(6)$x$の値が,異なる$5$つの実数$a_1,\ a_2,\ a_3,\ a_4,\ a_5$のときに限り$f(x)=0$となる.

このとき$a_1+a_2+a_3+a_4+a_5=[エ]$である.
金沢工業大学 私立 金沢工業大学 2011年 第1問
次の問いに答えよ.

(1)$x=\sqrt{3}+\sqrt{2}$のとき,$\displaystyle x+\frac{1}{x}=[ア] \sqrt{[イ]}$,$\displaystyle x^3+\frac{1}{x^3}=[ウエ] \sqrt{[オ]}$である.
(2)$(2a+1)(2a-1)(a^2-a+4)$の展開式における$a^2$の項の係数は$[カキ]$である.
(3)整式$A=x^2-2xy+3y^2$,$B=2x^2+3y^2$,$C=x^2-2xy$について
\[ 2(A-B)-\{C-(3A-B)\}=[クケ]x^2-[コ]xy+[サ]y^2 \]
である.
(4)方程式$x^2+3kx+k^2+5k=0$が重解をもつような定数$k$の値は$[シ]$,$[ス]$である.ただし,$[シ]<[ス]$とする.また,$k=[ス]$のとき,この方程式の重解は$x=[セソ]$である.
(5)$2$次関数$y=2x^2-2mx-m^2+9$のグラフが$x$軸の正の部分と異なる$2$点で交わるような定数$m$の値の範囲は$\sqrt{[タ]}<m<[チ]$である.
(6)$\displaystyle \tan \theta=-\frac{\sqrt{5}}{2}$のとき,$\displaystyle \sin \theta=\frac{\sqrt{5}}{[ツ]}$,$\displaystyle \cos \theta=\frac{[テト]}{[ナ]}$である.ただし,$0^\circ \leqq \theta \leqq 180^\circ$とする.
(7)数字$0,\ 1,\ 2,\ 3,\ 4$を使い$4$桁の整数を作る.このとき,$4$桁の整数は全部で$[アイ]$個あり,このうち$2$の倍数は$[ウエ]$個ある.ただし,同じ数字を重複して使わないこととする.
(8)大小$2$個のさいころを同時に投げ,大きいさいころの出た目を$X$,小さいさいころの出た目を$Y$とする.このとき,$X+Y=8$となる確率は$\displaystyle \frac{[オ]}{[カキ]}$であり,$2X-Y=4$となる確率は$\displaystyle \frac{[ク]}{[ケコ]}$である.
上智大学 私立 上智大学 2011年 第1問
$a,\ b,\ c$は整数で,$a \geqq 1,\ b \geqq 0,\ c \geqq 0$とする.$x$の2次式$P(x)=ax^2+bx+c$を考える.

(1)$P(1)=2$を満たす$P(x)$は全部で[ア]個存在する.
(2)条件 \[ \lceil P(n)=5 \text{を満たす自然数}n\text{が存在する}\rfloor \]
を満たす$P(x)$は全部で[イ]個存在する.
このような$P(x)$のうち,$P(3)=17$を満たすものは
\[ P(x) = [ウ]x^2+[エ]x+[オ] \]
である.
(3)条件
\[ \lceil P(n)=3 \text{を満たす自然数}n\text{が存在し,} \]
\[ \qquad \qquad \text{かつ,任意の自然数}m\text{に対して}P(m)\text{が奇数である}\rfloor \]
を満たす$P(x)$のうち,$a$が最大のものは
\[ P(x) = [カ]x^2+[キ]x+[ク] \]
であり,$a$が最小のものは
\[ P(x) = [ケ]x^2+[コ]x+[サ] \]
である.
北海学園大学 私立 北海学園大学 2011年 第2問
$1$から$10$までの整数の中から異なる$3$個の整数を取り出す.

(1)$3$個の整数の取り出し方は全部で何通りあるか.
(2)取り出した$3$個の整数の和が偶数になる場合は何通りあるか.
(3)取り出した$3$個の整数の和が$10$以上の偶数になる場合は何通りあるか.
東北学院大学 私立 東北学院大学 2011年 第5問
次の問いに答えよ.

(1)$2160$の正の約数は全部で何個あるか.またそれらの総和を求めよ.
(2)$864$の正の約数のうち,$12$の倍数または$18$の倍数であるものは全部で何個あるか.またそれらの総和を求めよ.
西南学院大学 私立 西南学院大学 2011年 第2問
次の問に答えよ.

(1)下図のように,正方形の各辺を$6$等分し,各辺に平行線を引く.これらの平行線によって作られる正方形でない長方形の総数は$[キクケ]$個である.
(図は省略)
(2)円周を$10$等分する$10$個の点がある.これらのうちの$3$個の点を頂点とする三角形を考える.直角三角形は全部で$[コサ]$個あり,また鈍角三角形は全部で$[シス]$個ある.
スポンサーリンク

「全部」とは・・・

 まだこのタグの説明は執筆されていません。