タグ「全て」の検索結果

4ページ目:全54問中31問~40問を表示)
東京大学 国立 東京大学 2012年 第4問
座標平面上の放物線$C$を$y=x^2+1$で定める.$s,\ t$は実数とし$t<0$を満たすとする.点$(s,\ t)$から放物線$C$へ引いた接線を$\ell_1,\ \ell_2$とする.

(1)$\ell_1,\ \ell_2$の方程式を求めよ.
(2)$a$を正の実数とする.放物線$C$と直線$\ell_1,\ \ell_2$で囲まれる領域の面積が$a$となる$(s,\ t)$を全て求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第1問
$3$枚のカードに,$1$,$2$,$3$の各数字が書かれている.この$3$枚のカードから$1$枚引き,そこに書いてある数字を記録してカードを戻す,という作業を$n$回繰り返す.ただし,何回目の作業であっても,どのカードを引く確率も等しいとする.一度も引かなかったカードがあった場合に限り,$n$回引いて得た数字のうち一番大きいものを得点として獲得するものとする.\\
例えば$n=5$のとき,引いた数字が順に$2$,$2$,$3$,$3$,$2$であれば$3$点を獲得し,$2$,$1$,$2$,$2$,$3$であれば得点は獲得しない.\\
以下の問いに答えよ.

(1)$1$点を獲得する確率を求めよ.
(2)$2$点を獲得する確率を求めよ.
(3)$3$点を獲得する確率を求めよ.
(4)獲得する得点の期待値が最大になるような作業の回数$n$の値を全て求め,そのときの期待値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第1問
$3$枚のカードに,$1$,$2$,$3$の各数字が書かれている.この$3$枚のカードから$1$枚引き,そこに書いてある数字を記録してカードを戻す,という作業を$n$回繰り返す.ただし,何回目の作業であっても,どのカードを引く確率も等しいとする.一度も引かなかったカードがあった場合に限り,$n$回引いて得た数字のうち一番大きいものを得点として獲得するものとする.\\
例えば$n=5$のとき,引いた数字が順に$2$,$2$,$3$,$3$,$2$であれば$3$点を獲得し,$2$,$1$,$2$,$2$,$3$であれば得点は獲得しない.\\
以下の問いに答えよ.

(1)$1$点を獲得する確率を求めよ.
(2)$2$点を獲得する確率を求めよ.
(3)$3$点を獲得する確率を求めよ.
(4)獲得する得点の期待値が最大になるような作業の回数$n$の値を全て求め,そのときの期待値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第1問
$3$枚のカードに,$1$,$2$,$3$の各数字が書かれている.この$3$枚のカードから$1$枚引き,そこに書いてある数字を記録してカードを戻す,という作業を$n$回繰り返す.ただし,何回目の作業であっても,どのカードを引く確率も等しいとする.一度も引かなかったカードがあった場合に限り,$n$回引いて得た数字のうち一番大きいものを得点として獲得するものとする.\\
例えば$n=5$のとき,引いた数字が順に$2$,$2$,$3$,$3$,$2$であれば$3$点を獲得し,$2$,$1$,$2$,$2$,$3$であれば得点は獲得しない.\\
以下の問いに答えよ.

(1)$1$点を獲得する確率を求めよ.
(2)$2$点を獲得する確率を求めよ.
(3)$3$点を獲得する確率を求めよ.
(4)獲得する得点の期待値が最大になるような作業の回数$n$の値を全て求め,そのときの期待値を求めよ.
山形大学 国立 山形大学 2012年 第1問
単位円の円周を$6$等分する点を時計回りの順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$,$\mathrm{P}_6$とする.さいころを投げて出た目$i$と点$\mathrm{P}_i$を対応させる.さいころを$3$回投げて出た目が全て異なる場合は対応する点を結ぶと三角形ができる.次の問に答えよ.

(1)$\triangle \mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_5$と$\triangle \mathrm{P}_1 \mathrm{P}_3 \mathrm{P}_5$の面積をそれぞれ求めよ.
(2)さいころを$3$回投げて,三角形ができる確率を求めよ.
(3)さいころを$3$回投げて,二等辺三角形(ただし正三角形は除く)ができる確率を求めよ.
(4)さいころを$3$回投げてできる図形の面積の期待値を求めよ.
明治大学 私立 明治大学 2012年 第1問
空欄$[ ]$に当てはまるものを入れよ.

(1)$5$個の数字$0$,$1$,$2$,$3$,$4$を並べて$5$桁の整数を作る.小さい順にこれらの整数を並べたとき,$57$番目の整数は$\fbox{\footnotesize \phantom{a}アイウエオ\phantom{a}}$である.また,偶数である整数は$[カキ]$個あり,$4$の倍数である整数は$[クケ]$個ある.
(2)次の連立方程式
\[ \left\{ \begin{array}{l}
\log_xy+2 \log_y x=3 \\
\log_x(y^2+xy)=2
\end{array} \right. \]
の解は$\displaystyle x=\frac{-[コ]+\sqrt{[サ]}}{[シ]}$,$\displaystyle y=\frac{[ス]-\sqrt{[セ]}}{[ソ]}$である.
(3)自然数$1,\ 2,\ \cdots,\ n$の中から異なる二つの数を選んで積を作る.このような積全ての和を$S_n$とおく.ただし,$S_1=0$とする.$S_n$と$S_{n-1}$の間には漸化式
\[ S_n=S_{n-1}+n \cdot \frac{[タ]}{[チ]} \]
が成り立つ.これを使って,$S_n$を求めると
\[ S_n=\frac{1}{[ツテ]} \cdot n(n+1)([ト]) \]
となる.
上智大学 私立 上智大学 2012年 第3問
$10$人ずつの男女に関する条件$(\mathrm{A})$~$(\mathrm{E})$を考える.

\mon[$(\mathrm{A})$] 帽子をかぶっている人がいるならばその人は男性であり,かつ,帽子をかぶっていて腕時計をしていない人がいる.
\mon[$(\mathrm{B})$] 帽子をかぶっている人がいるならばその人は男性であり,かつ,腕時計をしていて帽子をかぶっていない人がいる.
\mon[$(\mathrm{C})$] 女性ならば帽子をかぶっておらず,かつ,腕時計をしている人がいるならばその人は帽子をかぶっている.
\mon[$(\mathrm{D})$] 帽子をかぶっている男性がおり,かつ,腕時計をしている人がいるならばその人は帽子をかぶっている.
\mon[$(\mathrm{E})$] 帽子をかぶっている女性がおり,かつ,帽子をかぶっている人がいるならばその人は腕時計をしている.


(1)選択肢の中から$(\mathrm{A})$であるための必要条件を全てマークせよ.例えば,「$(\mathrm{A}) \Longrightarrow (\mathrm{a})$」が真であるときは$\mathrm{a}$をマークせよ.ただし,必要条件が選択肢の中になければ$z$をマークせよ.
(2)選択肢の中から$(\mathrm{B})$であるための必要条件を全てマークせよ.ただし,必要条件が選択肢の中になければ$z$をマークせよ.
(3)選択肢の中から$(\mathrm{C})$であるための必要条件を全てマークせよ.ただし,必要条件が選択肢の中になければ$z$をマークせよ.
(4)選択肢の中から$(\mathrm{D})$であるための必要条件を全てマークせよ.ただし,必要条件が選択肢の中になければ$z$をマークせよ.
(5)選択肢の中から$(\mathrm{E})$であるための必要条件を全てマークせよ.ただし,必要条件が選択肢の中になければ$z$をマークせよ.

選択肢:
$(\mathrm{a})$ 腕時計をしている人がいるならばその人は男性である.
$(\mathrm{b})$ 腕時計をしている男性がいる.
$(\mathrm{c})$ 腕時計をしている人がいるならばその人は女性である.
$(\mathrm{d})$ 腕時計をしている女性がいる.
$(\mathrm{e})$ 腕時計をしていない男性がいる.
$(\mathrm{f})$ 腕時計をしていない女性がいる.
東京女子大学 私立 東京女子大学 2012年 第3問
初項$a$,公差$d$の等差数列$\{a_n\}$と,初項$b$,公比$r$の等比数列$\{b_n\}$があり,数列$\{c_n\}$は$c_n=a_n+b_n$により定まる数列とする.$a,\ b,\ d,\ r$が全て正の整数で,$c_1=4$,$c_2=9$,$c_3=17$のとき,以下の設問に答えよ.

(1)$a,\ b,\ d,\ r$の値を求めよ.
(2)数列$\{c_n\}$の初項から第$n$項までの和を求めよ.
安田女子大学 私立 安田女子大学 2012年 第4問
$100 \, \mathrm{g}$の食塩水が入ったコップが$10$個ある.ただし,食塩水の濃度はコップごとに異なり,$1 \, \%$,$2 \, \%$,$\cdots$,$10 \, \%$が$1$個ずつとなっている.このとき,次の問いに答えよ.

(1)$10$個のコップの中から無作為にコップを$1$個選ぶとき,選んだ食塩水の濃度が$3 \, \%$以上となる確率を求めよ.
(2)$10$個のコップの中から無作為にコップを$2$個選び,選んだコップの全ての食塩水を一つの空の大きな器に入れてよく混ぜ,新たに食塩水を作る.このとき,作った食塩水の濃度が$3 \, \%$以上となる確率を求めよ.
(3)$10$個のコップの中から無作為にコップを$3$個選び,選んだコップの全ての食塩水を一つの空の大きな器に入れてよく混ぜ,新たに食塩水を作る.このとき,作った食塩水の濃度が$3 \, \%$以上となる確率を求めよ.
名古屋市立大学 公立 名古屋市立大学 2012年 第2問
図のような縦横同数の格子の全ての格子点上に,白または黒の石を置く.縦または横に隣り合う石の色が同じならその間に実線を,異なっていれば点線を引き,実線の数を数える操作を行う.図$1$の実線の数は$2$本,図$2$では$5$本である.
(図は省略)

(1)$2 \times 2$の格子点に$4$つの石を置くとき,石の置き方にかかわらず,実線の数は偶数になることを示せ.
(2)$3 \times 3$の格子点に$9$つの石を置くとき,実線の数が奇数になるための必要十分条件を示せ.ただし,(1)の結果を使ってもよい.
スポンサーリンク

「全て」とは・・・

 まだこのタグの説明は執筆されていません。